Indications du chapitre 14 : Dérivabilité

I Nombre dérivé, fonction dérivée

Exercise 1: $\frac{f(a+h^2)-f(a+h)}{h} = h \frac{f(a+h^2)-f(a)}{h^2} + \frac{f(a)-f(a+h)}{h}.$ Solution: -f'(a)

Exercice 2: (\star) $\Rightarrow b$ Remarquer que $\frac{f(b_n)-f(a_n)}{b_n-a_n} = \frac{f(b_n)-f(0)}{b_n-0} + \frac{a_n}{b_n-a_n} \left(\frac{f(b_n)-f(0)}{b_n-0} - \frac{f(0)-f(a_n)}{0-a_n} \right)$.

Exercice 3: (*)

- 1. Encadrer le taux d'accroissement en 0.
- 2. Solution: $\lim f'(u_n) = -\infty$ et $\lim f'(v_n) = +\infty$.
- 3. Remarquer que $\lim u_n = \lim v_n = 0$.

Exercice 4: (*)

- 1. Simplifier le taux d'accroissement en 0. Solution : $si \ n > 2$, f_1 est dérivable en 0 et $f_1'(0) = 0$, $si \ n = 2$, f_1 est dérivable en 0 et $f_1'(0) = 1$, $sinon \ f_1$ n'est pas dérivable en 0.
- 2. Solution : f₂ n'est pas dérivable en 0
- 3. Solution: f_3 est dérivable en 0 et $f'_4(0) = 0$

Exercice 5:

1. Montrer que f est continue, stricetement croissante et étudier ses limites en $\frac{\pi}{2}$ et en π .

Solution : f réalise une bijection vers $[1, +\infty[$.

2. Montrer que f est dérivable et que f' ne s'annule pas. Solution: $\forall x \in]1, +\infty[, (f^{-1})'(x) = \frac{1}{\sqrt{x^2-1}}]$.

II Propriétés des fonctions dérivables

Exercice 6 : 🕮

Pour $n \in \mathbb{Z}$, remarquer que f(nT) = f((n+1)T) et appliquer le théorème de Rolle.

Exercice 7:

Appliquer deux fois le théorème de Rolle à $x \mapsto f(x) - x$ puis à f'.

Exercice 8: (*)

Appliquer le théorème de Rolle à $x \mapsto x^{\lambda} f(x)$.

Exercice 9: (*)

Appliquer le théorème de Rolle à $x \mapsto (f(b) - f(a))g(x) - (g(b) - g(a))f(x)$.

Exercice 10: $(\star\star)$

- 1. Le seul problème est la continuité en 0.
- 2. Montrer que g(0) = g(1) et appliquer le théorème de Rolle à la fonction g.

Exercice 11: $(\star\star)$

Se ramener à la recherche d'un extremum sur un segment.

Exercice 12: (*)

Raisonner par récurrence sur l et appliquer le théorème de Rolle.

Exercice 13: $(\star\star)$

- 1. On pose $h: x \mapsto (f(b) f(a))g(x) (g(b) g(a))f(x)$. Montrer que h(a) = h(b) et appliquer le théorème de Rolle à h.
- 2. On applique le résultat de la question précédente à x_0 et à x voisin de x_0 : Il existe $c_x \in]x_0, x[$ ou $]x, x_0[$ tel que : $f'(c_x)(g(x) g(x_0)) = g'(c_x)(f(x) f(x_0))$. Donc : $f'(c_x)g(x) = g'(c_x)f(x)$. Montrer que $g(x) \neq 0$ en raisonnant par l'absurde et en appliquant le théorème de Rolle. Comme $\lim_{x \to x_0} c_x = x_0$, on a : $\lim_{x \to x_0} \frac{f'(c_x)}{g'(c_x)} = l$. Conclure.
- 3. Solution: $\lim_{x \to 0} \frac{x \sin x}{x^3} = \frac{1}{6}$, $\lim_{x \to 0} \frac{\ln(1+x) x}{x^2} = -\frac{1}{2}$.

Exercice 14:

Appliquer l'inégalité des accroissements finis à $x \mapsto \ln x$ sur l'intervalle [k, k+1].

Exercice 15: (\star) Appliquer le théorème des accroissements finis entre 0 et x à la fonction : $t \mapsto f(t) - f(-t)$.

Exercice 16: (\star)

Comme : $\forall t \in [x, x+1], \frac{1}{x+1} \le \ln'(t) \le \frac{1}{x}$, on a, en appliquant l'inégalité des accroissements finis à la fonction ln entre x et x+1:

$$\frac{1}{x+1} \le \ln(x+1) - \ln(x) \le \frac{1}{x}.$$

Donc $\frac{1}{x+1} \le \ln \frac{x+1}{x}$, ainsi, $1 \le (x+1) \ln \frac{x+1}{x}$, donc, par passage à l'exponentielle : $e \le \left(\frac{1+x}{x}\right)^{x+1}$.

Raisonner de même pour l'autre membre de l'inégalité.

On effectue une preuve par récurrence pour le second point.

- Pour n = 1, ...
- Soit $n \in \mathbb{N}^*$, supposons que:

$$\frac{(n+1)^n}{n!} \le e^n \le \frac{(n+1)^{n+1}}{n!} \quad (1)$$

En appliquant la première inégalité à x = n + 1, on a :

$$\left(\frac{n+2}{n+1}\right)^{n+1} \le e \le \left(\frac{n+2}{n+1}\right)^{n+2} \tag{2}$$

Faire le produit de (1) et (2) pour conclure.

Exercice 17:

- 1. Utiliser la fonction $\left[\frac{3}{2}, \frac{5}{2}\right] \rightarrow \left[\frac{3}{2}, \frac{5}{2}\right]$, $x \mapsto 2 + \frac{1}{2}\sin x$. Solution: (u_n) converge vers l'unique $l \in \left[\frac{3}{2}, \frac{5}{2}\right]$ tel que $2 + \frac{1}{2}\sin l = l$.
- 2. Utiliser la fonction $[-1,1] \rightarrow [-1,1]$, $x \mapsto \cos x$. Solution: (u_n) converge vers l'unique $l \in [-1,1]$ tel que $\cos l = l$.

Exercice 18: (\star)

- 1. Faire une étude de fonctions.
- 2. Appliquer l'inégalité des accroissements finis à $x \mapsto \ln(1+x)$ sur [0,x] ou [x,0].
- 3. Effectuer le changement de variable $t = \frac{\pi}{2} x$, remarquer que : $\forall t \in [0, \frac{\pi}{2}]$, $\sin t \le t$ et faire une étude de fonctions.
- 4. Appliquer l'inégalité des accroissements finis à $x \mapsto \operatorname{Arcsin} x \operatorname{sur} [x, y]$.

Exercice 19: Utiliser le théorème de la limite de la dérivée.

Exercice 20: $(\star\star)$

Résoudre l'équation sur] $-\infty$, 0[, sur]0, 1[et sur]1, $+\infty$ [puis utiliser le théorème de la limite de la dérivée.

Solution : Pas de solution sur \mathbb{R}

Exercice 21: (★★)

Résoudre l'équation sur $]-\infty,0[$ et sur $]0,+\infty[$ puis utiliser le théorème de la limite de la dérivée.

Solution:
$$\begin{cases} \mathbb{R} & \to \mathbb{R} \\ x & \mapsto \begin{cases} \lambda_1 x^2 + \frac{x^4}{2} & si \quad x \ge 0 \\ \lambda_2 x^2 + \frac{x^4}{2} & si \quad x < 0 \end{cases}$$

Exercice 22:
$$(\star\star)$$

Résoudre l'équation sur \mathbb{R}^{+*} et sur \mathbb{R}^{-*} puis chercher les solutions deux fois dérivables sur \mathbb{R} .

Solution:
$$\left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \left\{ \begin{array}{ccc} \lambda_1 \cos x + (\lambda_2 + 2) \sin x - x + 1 & si & x \le 0 \\ \lambda_1 \cos x + \lambda_2 \sin x + x + 1 & si & x > 0 \end{array} \right. , \lambda_1, \lambda_2 \in \mathbb{R} \right\}$$

III Fonctions de classe C^k

Exercice 23:

Appliquer la formule de Leibnitz.

Solution:
$$x \mapsto 2^n(x^2+1)e^{2x} + 2^n nxe^{2x} + n(n-1)2^{n-2}e^{2x}$$

Exercice 24:

- 1. Prouver que $\cos^3 x = \frac{1}{4} \operatorname{Re}(e^{3ix} + 3e^{ix})$. $Solution: f_1^{(n)}(x) = \frac{1}{4} (3^n \cos(3x + \frac{n\pi}{2}) + 3\cos(x + \frac{n\pi}{2}))$
- 2. Utiliser $f_2(x) = \text{Im}(e^{(1+i)x})$. Solution: $f_2^{(n)}(x) = (\sqrt{2})^n e^x \sin(x + \frac{n\pi}{4})$
- 3. Utiliser la formule de Leibnitz. Solution: $f_3^{(n)}(x) = (-1)^n e^{-x} (x^3 + (1-3n)x^2 + (3n^2 - 5n)x + 1 + n(n-1)(3-n))$

Exercice 25: (★★)

Utiliser la formule de Leibnitz et étudier le coefficient dominant de l'expression trouvée pour en déduire la somme.

Solution:
$$f^{(n)}(x) = n! \sum_{k=0}^{n} {n \choose k}^2 x^{n-k} (1+x)^k \text{ et } \sum_{k=0}^{n} {n \choose k}^2 = {2n \choose n}$$

Exercice 26: (★★)

Avoir l'intuition de la formule puis la prouver par récurrence en remarquant que $f_{n+1}(x) = x \cdot f_n(x)$.

Solution: $f_n^{(n+1)} = \frac{(-1)^{n+1}}{x^{n+2}} e^{1/x}$.

Exercice 27: $(\star\star)$

Soit $n \in \mathbb{N}^*$, montrer par récurrence que : $\forall k \in [0, n]$, $\forall x \in [0, 1]$, $|f^{(n-k)}(x)| \leq x^{k+1}$. Pour cela, on pourra appliquer le théorème des accroissements finis.

En déduire que $\forall n \in \mathbb{N}^*, \forall x \in [0,1[,|f(x)| \le x^{n+1}]$ et faire tendre n vers $+\infty$.

IV Fonctions convexes

Exercice 28:

Montrer que la fonction $x \mapsto -\ln(\ln x)$ est convexe.

Exercice 29: (*)

1. Calculer $\lim_{x \to \pm \infty} \frac{f(x) - f(x_0)}{x - x_0}$ et utiliser la croissance du taux d'accroissment.

2. *Solution* : $x \mapsto e^{-x}$.

Exercice 30: $(\star\star)$

Soient $x, y \in [0, \frac{1}{2}]$ tels que $x \le y$. Montrer qu'il existe $\lambda \in [0, 1]$ tel que $y = \lambda x + (1 - \lambda)(1 - x)$ et appliquer la convexité aux points y et 1 - y.

Exercice 31: $(\star\star)$

Raisonner par analyse-synthèse.

Solution: $x \mapsto ax + b$, $a, b \in \mathbb{R}$.

Exercice 32: $(\star \star \star)$

- 1. Raisonner par récurrence sur n.
- 2. Applications:
 - (a) Appliquer l'inégalité de Jensen à la fonction ln avec les coefficients $\frac{1}{6}$, $\frac{1}{3}$ et $\frac{1}{2}$.
 - (b) Montrer que la fonction $x \mapsto \left(x + \frac{1}{x}\right)^2$ est convexe et appliquer l'inégalité de Jensen.