Indications du chapitre 11 : Suites numériques

I Limite d'une suite réelle

Exercice 1: $(\star \star \star)$

- 1. Montrer et utiliser que, pour $N \in \mathbb{N}^*$, $f^{-1}([0, N-1])$ est fini et admet un plus grand élément.
- 2. Montrer et utiliser que, pour $N \in \mathbb{N}^*$, f([[0, N-1]]) est fini et admet un plus grand élément.
- 3. Utiliser les questions précédentes.

Exercice 2:

Utiliser la quantité conjuguée.

Solution: $\frac{\bar{a}+b}{2}$

Exercice 3:

- 1. Utiliser la quantité conjuguée. *Solution* : 1
- 2. Utiliser la quantité conjuguée. *Solution* : 0
- 3. Utiliser la quantité conjuguée. *Solution* : –1

Exercice 4: (*)

- 1. Solution:0
- 2. Faire des cas selon la position relative de a et b. Solution : 0 si a = b, -1 si b > a, 1 si a > b
- 3. Factoriser par le terme dominant. *Solution* : $\frac{1}{5}$
- 4. Factoriser par le terme dominant. Solution : $\frac{2}{5}$
- 5. Utiliser la quantité conjuguée. *Solution* : 0

Exercice 5:

1. Utiliser l'exponentielle et le logarithme.

Solution: e

 $2. \ \ Utiliser l'exponentielle et le logarithme.$

Solution:1

3. Utiliser l'exponentielle et le logarithme.

Solution:1

4. Utiliser l'exponentielle et le logarithme. $Solution : e^{-1}$

Exercice 6: (*)

- 1. Utiliser une majoration de (u_n) à partir d'un certain rang.
- 2. Utiliser une minoration de (u_n) à partir d'un certain rang.
- 3. Solution: $\lim u_n = e \ et \lim \sqrt[n]{u_n} = 1$.

Exercice 7: (\star)

- 1. Etudier les cas $x \le y$ et x > y.
- 2. *Solution*: $\lim x_n = \sup(\lim u_n, \lim v_n)$, $\lim y_n = \inf(\lim u_n, \lim v_n)$

Exercice 8:

Montrer que $0 \le a - u_n \le (a + b) - (u_n + v_n)$ et utiliser le théorème d'encadrement.

Exercice 9:

1. Utiliser des inégalités.

Solution:1

2. Utiliser des inégalités. Solution : $\frac{x}{2}$

Exercice 10: (\star)

Montrer que : $\forall n \in \mathbb{N}^*$, $\frac{n}{\sqrt{n^2+n}} \le u_n \le \frac{n}{\sqrt{n^2+1}}$

Solution : $\lim u_n = 1$

Exercice 11: (*)

Remarquer que, pour $1 \le k \le n-2$, $k! \le (n-2)!$ et utiliser le théorème d'encadrement. *Solution* : $\lim u_n = 1$

Exercice 12: $(\star\star)$

Remarquer que $2nu_{n+1} \le n(u_n + u_{n+1}) \le 2nu_n$ et utiliser le théorème d'encadrement.

II Suites monotones

Exercice 13: $(\star\star)$

- 1. Remarquer que $\sup B$ est un majorant de A.
- 2. Remarquer que max(sup A, sup B) est un majorant de $A \cup B$. Pour calculer sup($A \cup B$), remarquer que $A \subset A \cup B$.

Solution : $\sup(A \cup B) = \max(\sup A, \sup B)$.

3. Remarquer que min(sup A, sup B) est un majorant de $A \cap B$. On peut avoir $A \cap B = \emptyset$ donc sup($A \cap B$) n'existe pas toujours.

Exercice 14: $(\star\star)$

Commencer par déterminer intuitivement les bornes supérieures et inférieures.

- 1. *Solution* : $\inf(A) = -1$, $\sup(B) = 1$
- 2. $Solution : \inf(B) = -1, \sup(C) = 1$

Exercice 15: (**)

Soient $x, y \in A$, montrer que $|x - y| \le \sup A - \inf A$, ainsi $d(A) \le \sup A - \inf A$.

Soit $\varepsilon > 0$, comme $\sup A - \varepsilon < \sup A$, il existe $x \in A$ tel que $x \ge \sup A - \varepsilon$ et comme $\inf A + \varepsilon > \inf A$, il existe $y \in A$ tel que $y \le \inf A + \varepsilon$, calculer |x - y| pour conlure.

On a donc, $\forall \varepsilon > 0$, $\sup A - \inf A - 2\varepsilon \le d(A) \le \sup A - \inf A$ et faire tendre ε vers 0. Solution : $d(A) = \sup(A) - \inf(A)$

Exercice 16: (*)

Remarquer que $a-\frac{1}{n}$ n'est pas un majorant de *A* pour construire u_n .

Exercice 17: (★★)

- 1. Montrer que $x \mapsto \ln(x) + x$ est bijective de $]0, +\infty[$ vers \mathbb{R} .
- 2. Utiliser la croissance de $x \mapsto \ln(x) + x$.
- 3. Raisonner par l'absurde.

Exercice 18: (*)

- 1. Raisonner par récurrence.
- 2. Utiliser les propriétés du carré.
- 3. Raisonner par l'absurde.
- 4. *Solution* : $\lim u_n = +\infty$.

Exercice 19: (★★)

Raisonner par récurrence pour montrer que $\forall n \in \mathbb{N}, 0 < v_n < 1$, puis montrer que (v_n) est croissante. Sa limite est dans [0,1]. Chercher une autre inégalité pour conclure.

Solution : $\lim v_n = 1$

Exercice 20: (\star)

Etudier la monotonie et chercher à majorer ou minorer la suite.

Solution : La suite (u_n) est décroissante et converge vers 1.

Exercice 21: (*)

Etudier la monotonie et chercher à majorer ou minorer la suite.

Solution : La suite (u_n) est décroissante et converge vers $\frac{1}{4}$.

Exercice 22: (**)

Dans le cas $u_0 < 0$, étudier la suite à partir du rang 1. Se ramener à l'étude de trois intervalles stables : $\left[0, \frac{1}{4}\right]$, $\left[\frac{1}{4}, \frac{3}{4}\right]$ et $\left[\frac{3}{4}, +\infty\right[$

Solution: La suite (u_n) converge vers $\frac{1}{4}$ si $u_0 \in \left] - \frac{3}{4}, \frac{3}{4} \right[$, la suite (u_n) converge vers $\frac{3}{4}$ si $u_0 = \pm \frac{3}{4}$ et sinon, la suite (u_n) diverge vers $+\infty$.

Exercice 23: $(\star\star)$

Etudier la monotonie et chercher à majorer ou minorer la suite.

Solution : Soit α *l'unique réel non nul tel que* $\ln(1+2\alpha) = \alpha$.

 $Si\ u_0 = 0$, alors (u_n) est constante égale à 0.

 $Si\ u_0 = \alpha$, alors (u_n) est constante égale à α .

 $Si\ u_0 \in]0, \alpha[, alors(u_n) \ est \ converge \ vers \alpha].$

 $Si\ u_0 \in]\alpha, +\infty[$, $alors\ (u_n)\ est\ converge\ vers\ \alpha.$

Si $u_0 < 0$, alors (u_n) n'est pas définie.

Exercice 24: (*)

- 1. Raisonner par récurrence.
- 2. Raisonner par récurrence.
- 3. Utiliser la définition.

Exercice 25: (*)

- Etudier la fonction $f: x \mapsto \frac{x+1}{x+2}$ sur [0,2]: on montrera que f est croissante et que [0,2] est stable par f.
- Montrer, par récurrence, que (u_n) est croissante et (v_n) est décroissante.
- En déduire que (u_n) et (v_n) sont convergentes (elles appartiennent à [0,2])
- Résoudre f(x) = x sur [0,2]: l'équation admet une unique solution : $l = \frac{-1+\sqrt{5}}{2}$.
- En déduire que (u_n) et (v_n) convergent vers l.
- Conclure.

Exercice 26: (**)

- 1. Utiliser la définition des suites adjacentes.
- 2. Raisonner par l'absurde.

Exercice 27: (★★)

- 1. Faire des calculs.
- 2. Remarquer que $(n+1)(1+\frac{1}{n})^{\alpha+1} \ge (n+1)(1+\frac{1}{n}) \ge n+2$.

III Suites extraites

Exercice 28:

Utiliser des suites extraites bien choisies.

Exercice 29: (*)

Montrer que $\lim x_{2n} = \lim x_{2n+1}$ en faisant apparaître les termes $x_{6n} = x_{2.(3n)} = x_{3.(2n)}$ et $x_{6n+3} = x_{2.(3n+1)+1} = x_{3.(2n+1)}$.

Exercice 30: $(\star\star)$

- 1. Minorer par une somme de termes constants.
- 2. Montrer que (H_n) est croissante et raisonner en supposant que (H_n) converge vers une limite finie.

Exercice 31: (*)

Soit p une période de la suite (u_n) , posons $l = \lim u_n$, soit $n_0 \in \mathbb{N}$, alors :

$$\forall n \in \mathbb{N}, u_{n_0+np} = u_{n_0}.$$

De plus, la suite $(u_{n_0+np})_{n\in\mathbb{N}}$ est extraite de (u_n) donc converge vers l. En déduire que $u_{n_0}=l$ et conclure.

Exercice 32: $(\star\star)$

Utiliser la définition des suites adjacentes.

Exercice 33: $(\star \star \star)$

Si on suppose l'existence de $\lim_{n\to+\infty}\cos(n\alpha)$, calculer $\cos((n+1)\alpha)$ et exprimer $\sin(n\alpha)$ en fonction de ces quantités.

Utiliser la relation $\cos^2 + \sin^2 = 1$ pour en déduire une contradiction.

Solution: Les suites $(\cos(n\alpha))_{n\in\mathbb{N}}$ et $(\cos(n\alpha))_{n\in\mathbb{N}}$ n'ont pas de limites.

IV Suites complexes

Exercice 34: (*)

- 1. Montrer que la suite (z_n) est géométrique. Solution : $\lim z_n = 0$
- 2. La suite (z_n) est arithmético-géométrique. Solution : $\lim z_n = \frac{2}{2-i}$