Exercices du chapitre 26 : Séries numériques

Convergence et divergence

Montrer que la série suivante est convergente et calculer sa somme :

$$\sum_{n\geq 2} \left(\frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n+1}} - \frac{2}{\sqrt{n}}\right).$$

Exercice 2: (\star)

Montrer que la série suivante est convergente et calculer sa somme :

$$\sum_{n\geq 1} \frac{3n+2}{n(n+1)(n+2)}.$$

Exercice 3: $(\star\star)$

Montrer que la série suivante est convergente et calculer sa somme :

$$\sum_{n>1} \frac{6^n}{(3^{n+1}-2^{n+1})(3^n-2^n)}.$$

II Séries à termes positifs

Exercice 4:

Soient $\sum_{n\geq 0} u_n$ et $\sum_{n\geq 0} v_n$ deux séries réelles convergentes, soit $\sum_{n\geq 0} w_n$ une série réelle telle que :

$$\forall n \in \mathbb{N}, u_n \leq w_n \leq v_n.$$

Montrer que $\sum_{n\geq 0} w_n$ converge.

Soit (u_n) une suite de réels positifs telle que $\sum u_n$ converge. Etudier la nature de la série de terme général :

$$\forall n \in \mathbb{N}, \ v_n = \sqrt{u_n u_{2n}}.$$

Exercice 6: $(\star\star)$ Soit (u_n) une suite décroissante à termes positifs telle que la série $\sum u_n$ converge. Montrer que:

$$\lim_{n\to+\infty}nu_n=0.$$

Exercice 7: (**)

Soit (a_n) une suite de réels strictement positifs. On pose :

$$\forall n \in \mathbb{N}, \ v_n = \frac{a_n}{(1+a_0)\dots(1+a_n)}.$$

- 1. Montrer que la série $\sum v_n$ converge.
- 2. Montrer que :

$$\sum_{n=0}^{+\infty} v_n = 1 \Leftrightarrow \sum a_n \text{ diverge.}$$

Exercice 8: $(\star\star)$

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels strictement positifs. On suppose que :

$$\lim_{n\to+\infty}\frac{u_{n+1}}{u_n}=l.$$

- 1. (a) Si l > 1, montrer que $\sum u_n$ diverge. (b) Si $l \in [0,1[$, montrer que $\sum u_n$ converge.

Ce résultat est appelé le critère de D'Alembert.

2. Etudier alors la nature des séries de terme général :

(a)
$$\forall n \in \mathbb{N}^*, \ u_n = \frac{2^n (\sin \alpha)^{2n}}{n^2} \text{ où } \alpha \in \left[0, \frac{\pi}{2}\right]$$

(b)
$$\forall n \in \mathbb{N}^*, u_n = \frac{\prod\limits_{k=1}^{n} (2k)}{n^n}$$

(c) $\forall n \in \mathbb{N}^*, u_n = \frac{\ln n}{n!}$
(d) $\forall n \in \mathbb{N}^*, u_n = \frac{\ln n}{2^n}$

(c)
$$\forall n \in \mathbb{N}^*, u_n = \frac{\ln n}{n!}$$

(d)
$$\forall n \in \mathbb{N}^*, u_n = \frac{\ln n}{2^n}$$

Exercice 9: (\star) Soit (u_n) une suite de réels strictement positifs. Etudier, selon la nature de $\sum u_n$ la nature de la série de terme général :

$$\forall n \in \mathbb{N}, \ v_n = \frac{u_n}{1 + u_n}.$$

Exercice 10: $(\star\star)$

Soient (u_n) et (v_n) deux suites de réels positifs, telles que (v_n) ne s'annule pas à partir d'un certain rang. On suppose que $u_n \sim v_n$.

1. Si $\sum v_n$ converge, montrer que :

$$\sum_{k=n}^{+\infty} u_k \sim \sum_{k=n}^{+\infty} v_k.$$

2. Si $\sum v_n$ diverge, montrer que :

$$\sum_{k=0}^{n} u_k \sim \sum_{k=0}^{n} v_k.$$

Exercice 11:

Déterminer la nature de la série de terme général :

$$\forall n \in \mathbb{N}^*, \ u_n = \int_0^{\pi/n} \sqrt{\sin x} \, dx.$$

Exercice 12:

Etudier la convergence des séries de terme général :

1.
$$u_n = (1 - \cos \frac{\pi}{n})(\ln n)^{1000}$$
,

2.
$$v_n = \sqrt[3]{n^3 + an} - \sqrt{n^2 + 3}, a \in \mathbb{R}$$
.

Exercice 13:

Etudier la nature de la série $\sum u_n$ dans les cas suivants :

$$1. \quad u_n = \frac{1}{n^2 - \ln n},$$

$$2. \ u_n = n - \sin \frac{1}{n},$$

$$3. \ u_n = n.\sin\frac{1}{n^2}.$$

Exercice 14: Etudier la nature de la série de terme général :

$$\forall n \in \mathbb{N}^*, u_n = 2\ln(n^3 + 1) - 3\ln(n^2 + 1).$$

Exercice 15: $(\star\star)$

1. Soit $\alpha \in]0,1[$. On pose :

$$\forall n \in \mathbb{N}^*, S_n = \sum_{k=1}^n \frac{1}{k^{\alpha}}.$$

Déterminer un équivalent de (S_n) .

2. Soit $\alpha > 1$. On pose :

$$\forall n \in \mathbb{N}^*, R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}.$$

Déterminer un équivalent de (R_n) .

Exercice 16: $(\star \star)$ Soit $p \in \mathbb{N}$, étudier, selon la valeur de p la nature de la série de terme général :

$$\forall n \in \mathbb{N}, u_n = \frac{1! + 2! + \dots + n!}{(n+p)!}.$$

Exercice 17: $(\star\star)$

Déterminer, pour $\alpha \in \mathbb{R}$ fixé, la nature de la série de terme général :

$$\forall n \in \mathbb{N}^*, u_n = \sum_{k=1}^n \frac{1}{(k^2 + (n-k)^2)^a}$$

Exercice 18: (**)

On considère la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par :

$$\forall n \in \mathbb{N}^*, u_n = \sum_{k=1}^n \frac{1}{\sqrt{1+k^2}} - \ln n.$$

Montrer que $(u_n)_{n\in\mathbb{N}^*}$ est convergente.

Exercice 19: $(\star\star)$

Montrer qu'il existe $\gamma \in \mathbb{R}$ tel que :

$$\sum_{k=1}^{n} \frac{1}{k} = \ln n + \gamma + \frac{1}{2n} + o\left(\frac{1}{n}\right).$$

Le réel γ est appelé la constante d'Euler.

Exercice 20: $(\star\star)$

Soit (u_n) une suite de réels positifs. On suppose que la limite suivante existe :

$$\lambda = \lim_{n \to +\infty} \frac{\ln \frac{1}{u_n}}{\ln n}.$$

Montrer que si $\lambda > 1$, la série $\sum u_n$ converge et si $\lambda < 1$, la série $\sum u_n$ diverge.

Exercice 21: $(\star \star \star)$

2

Soit $\varphi: \mathbb{N}^* \to \mathbb{N}^*$ injective. Montrer que la série $\sum_{n=1}^{+\infty} \frac{\varphi(n)}{n^2}$ diverge.

III Séries absolument convergentes

Exercice 22:

Etudier la nature de la série $\sum u_n$ dans les cas suivants :

1.
$$u_n = \frac{(-1)^n}{n^2}$$
,

$$2. \ u_n = \cos n \left(1 - \cos \frac{1}{n} \right),$$

$$3. \ u_n = \frac{\sin n}{n^2},$$

4.
$$u_n = \frac{(1+n)\sin(n)}{n^2\sqrt{n}}$$
.

Exercice 23: (\star)

Etudier la nature des séries de termes généraux suivants :

1.
$$\forall n \in \mathbb{N}^*, u_n = \sqrt{n^4 + 2n + 1} - \sqrt{n^4 + kn}, \text{ où } k \in \mathbb{N},$$

2.
$$\forall n \in \mathbb{N}^*, u_n = \left(1 + \frac{1}{n+1}\right)^{2n} - \left(1 + \frac{2}{n+a^2}\right)^n$$
, où $a \in \mathbb{R}$.

Exercice 24: (**)

1. Démontrer la règle de Raabe-Duhamel : soit $a \in \mathbb{R}$, soit (u_n) une suite à termes strictements positifs telle que, au voisinage de $+\infty$:

$$\frac{u_{n+1}}{u_n} = \frac{1}{1 + \frac{a}{n} + O\left(\frac{1}{n^2}\right)}.$$

Montrer qu'il existe $\lambda > 0$ tel que, au voisinage de $+\infty$:

$$u_n \sim \frac{\lambda}{n^a}$$
.

2. Soient $a, b \in \mathbb{R}^+$, soit u_n la suite définie par $u_0 = 1$ et :

$$\forall n \in \mathbb{N}, \ \frac{u_{n+1}}{u_n} = \frac{n+a}{n+b}.$$

Déterminer la nature de la série $\sum u_n$.

Exercice 25: $(\star\star)$

- 1. Soit (u_n) une suite de réels strictement positifs, décroissante et convergeant vers 0. On considère la suite (S_n) définie par $S_n = \sum_{k=1}^n (-1)^k u_k$ pour tout $n \in \mathbb{N}^*$.
 - (a) Montrer que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes.
 - (b) En déduire que la série $\sum (-1)^n u_n$ est convergente. Ce résultat est appelé le critère spécial des séries alternées.
- 2. Applications:
 - (a) Soit $\alpha \in \mathbb{R}$. Etudier la nature de la série $\sum \frac{(-1)^n}{n^{\alpha}}$.
 - (b) Etudier la nature de la série de terme général : $\forall n \in \mathbb{N}^*, \ u_n = (-1)^n \left((1 + \frac{1}{n})^{-n} \frac{1}{e} \right),$
 - (c) Etudier la nature de la série de terme général : $\forall n \in \mathbb{N}, u_n = \sin\left(\pi \frac{n^3 + 1}{n^2 + 1}\right)$.
 - (d) Etudier la nature de la série de terme général :

$$\forall n \in \mathbb{N}^*, u_n = \int_{n\pi}^{(n+1)\pi} \frac{\sin x}{x \ln x} dx.$$