Exercices du chapitre 15 : Polynômes

I L'ensemble $\mathbb{K}[X]$

Exercice 1: (*)

1. Soit $n \in \mathbb{N}$, on pose : $P = \sum_{k=0}^{n} X^k$ et $Q = \sum_{k=0}^{n} (-1)^k X^k$. Calculer :

deg(P+Q).

2. Soit $n \ge 2$, on pose : $P = \sum_{k=0}^{n} {n \choose k}^2 X^k$ et $Q = X^n + (-1)^n n^2 X^{n-1} + X^{n-2}$. Calculer :

deg(P-Q).

Exercice 2: (\star) Déterminer l'ensemble des $P \in \mathbb{K}[X]$ tels que :

$$P(X^2) = (X^2 + 1)P(X).$$

II Divisibilité et division euclidienne dans $\mathbb{K}[X]$

Exercice 3:

Soit $n \in \mathbb{N}$, montrer que :

$$X^{2}|(X+1)^{n}-nX-1.$$

Exercice 4: $(\star\star)$ Montrer que pour tout $P \in \mathbb{K}[X]$, P - X divise $P \circ P - X$. En déduire les solutions $x \in \mathbb{R}$ de :

$$(x^2 - 3x + 1)^2 = 3x^2 - 8x + 2.$$

Exercice 5 : $\stackrel{\searrow \vee \vee \vee}{\frown}$ Effectuer la division euclidienne de *A* par *B* avec :

- 1. $A = X^4 + 2X^3 X + 6$, $B = X^3 6X^2 + X + 4$
- 2. $A = iX^3 X^2 + 1 i$, $B = (1 + i)X^2 iX + 3$,

Exercice 6: Effectuer la division euclidienne de A par B avec :

- 1. $A = 2X^4 3X^3 + 4X^2 5X + 6$, $B = X^2 3X + 1$,
- 2. $A = X^3 iX^2 X$, B = X 1 + i.

Exercice 7: (\star)

Soit $n \in \mathbb{N}^*$. On pose $A = X^{2n} - X^2 + 1$ et $B = X^2 - X$.

Déterminer le reste de la division euclidienne de A par B.

Exercice 8: (**)

Soient $n \in \mathbb{N}$, $p \in \mathbb{N}^*$, q et r le quotient et le reste de la division euclidienne de n par p et soit $a \in \mathbb{K}^*$.

- 1. Montrer que le reste de la division euclidienne de X^n par $X^p a$ est $a^q X^r$.
- 2. Calculer le reste de la division euclidienne de $X^n a^n$ par $X^p a^p$.
- 3. Calculer le reste de la division euclidienne de $X^{12} + 8X^{11} + 5X^6 3X^4 + X^2 5$ par $X^3 1$.

III Evaluation polynomiale et racines

Exercice 9:

Soit $n \in \mathbb{N}^*$, montrer que :

$$X^{2}-3X+2|(X-2)^{2n}+(X-1)^{n}-1.$$

Exercice 10: (*)

Déterminer les couples $(a, b) \in \mathbb{R}^2$ tels que :

$$X^2 + 1|X^4 + X^3 + aX^2 + bX + 1.$$

Exercice 11: $(\star\star)$

Résoudre l'équation d'inconnues $P, Q \in \mathbb{C}[X]$:

$$(X^2 - 5X + 7)P + (X - 2)O = (2X - 3).$$

Exercice 12: $(\star\star)$

On définit une suite de polynômes par :

$$T_0 = 1$$
, $T_1 = X$,

$$\forall n \in \mathbb{N}, T_{n+2} = 2XT_{n+1} - T_n.$$

1. Déterminer le degré et le coefficient dominant de \mathcal{T}_n .

2. Soit $n \in \mathbb{N}$. Montrer que T_n est l'unique polynôme vérifiant :

$$\forall \theta \in \mathbb{R}, \, T_n(\cos \theta) = \cos(n\theta).$$

3. Déterminer les racines de T_n .

Exercice 13:

Déterminer tous les polynômes de $\mathbb{C}[X]$ dont la fonction polynomiale associée est périodique.

Exercice 14:

Soit (S) le système :

$$\begin{cases} 3x + 4xy + 3y &= -5 \\ x - 2xy + y &= 5 \end{cases}$$

- 1. Déterminer la valeur de la somme s = x + y et du produit p = xy de tout couple (x, y) de solutions de (S).
- 2. Résoudre (S).

IV Dérivation dans $\mathbb{K}[X]$

Exercice 15:

Soit $n \ge 1$. Soit P un polynôme de degré n.

Déterminer le degré des polynômes $Q = X^2P' + P$ et R = XP' + P.

Exercice 16: (\star)

Déterminer les polynômes $P \in \mathbb{R}[X]$ tels que :

$$XP'' + X^2P' = 2X^3 - X^2 + 2X.$$

Exercice 17: $(\star\star)$

Déterminer l'ensemble des $P\in\mathbb{R}[X]$ tels que :

$$X^2P'' + 2XP' - 2P = 0.$$

Exercice 18: (*)

Pour tout $n \in \mathbb{N}$, on pose :

$$L_n(X) = \frac{1}{2^n n!} P_n^{(n)}$$
 où $P_n = (X^2 - 1)^n$.

1. Déterminer le degré et le coefficient dominant de L_n .

2. Calculer $L_n(1)$ et $L_n(-1)$.

Exercice 19: $(\star\star)$

Soit $P \in \mathbb{C}[X] \setminus \{0\}$, soit $n = \deg P$. Montrer que les sommes des zéros de $P, P', \ldots, P^{(n-1)}$ forment une progression arithmétique.

Exercice 20:

Soit $P = \sum_{k=0}^{n} a_k X^k \in \mathbb{K}[X]$. Montrer que :

$$\forall k \in [0, n], P^{(k)}(0) = k! a_k.$$

Exercice 21: Soit $n \in \mathbb{N}^*$, montrer que:

$$(X-1)^2 \left| \left(\sum_{k=0}^{n-1} X^k \right)^2 - n^2 X^{n-1} \right|$$

et

2

$$(X-1)^3 | nX^{n+2} - (n+2)X^{n+1} + (n+2)X - n.$$

Exercice 22: (*)

Soit $n \in \mathbb{N}$ tel que $n \ge 2$. On pose :

$$P = \sum_{k=0}^{n} \frac{X^k}{k!}.$$

- 1. Calculer P(X) P'(X).
- 2. Montrer que toutes les racines complexes de *P* sont simples.

Exercice 23: (★★)

Soient $a, b \in \mathbb{C}$ tel que $b \neq 0$.

Trouver les polynômes de degré 5 tels que P(X) + a soit divisible par $(X + b)^3$ et P(X) - a soit divisible par $(X - b)^3$.

Exercice 24: Soit $P = X^{10} - 25X^6 + 48X^5 - 25X^4 + 1 \in \mathbb{C}[X]$. Montrer que 1 est racine de P et déterminer son ordre de multiplicité.

Exercice 25: $(\star \star \star)$

Déterminer les entiers $n \in \mathbb{N} \setminus \{0,1\}$ tels que $P = (X-1)^n - (X^n-1)$ ait une racine double.

Exercice 26: (\star) Soit $P \in \mathbb{R}[X]$.

Montrer que si P est scindé et $deg(P) \ge 2$ alors P' est scindé.

V Polynômes irréductibles

Exercice 27: $(\star\star)$

Soit $P \in \mathbb{C}[X]$ tel que deg $P \ge 2$. Montrer que l'application $\mathbb{C} \to \mathbb{C}$, $x \mapsto P(x)$ n'est pas injective.

Exercice 28: (**)

Soit $P \in \mathbb{C}[X]$ tel que :

$$P(X^2) = P(X-1)P(X+1).$$

- 1. Montrer que si α est racine de P, il existe une racine de P dont le module est strictement supérieur à $|\alpha|$.
- 2. En déduire le polynôme *P*.

Exercice 29: $(\star\star)$

- 1. Soit $n \in \mathbb{N}^*$, soit $P_n = \sum_{k=0}^n X^k$. Déterminer la décomposition en polynômes irréductibles dans $\mathbb{C}[X]$ de P_n .
- 2. En déduire, pour tout $n \in \mathbb{N}^*$, la valeur de :

$$\prod_{k=1}^{n} \sin \frac{k\pi}{n+1}.$$

Exercice 30: Factoriser dans $\mathbb{R}[X]$ les polynômes suivants :

- 1. $(X^2 X + 1)^2 + 1$,
- 2. $X^3 5X^2 + 3X + 9$,
- 3. $(X^2 X + 2)^2 + (X 2)^2$
- 4. $6X^5 + 15X^4 + 20X^3 + 15X^2 + 6X + 1$.

Exercice 31: (*)

Factoriser dans $\mathbb{R}[X]$ le polynôme $P = X^4 - 14X^2 + 24X - 8$ sachant qu'il admet une racine multiple.

Exercice 32 : (\star) Donner la décomposition en facteurs irréductibles dans $\mathbb{C}[X]$ puis dans $\mathbb{R}[X]$ de :

$$P = X^n - 1$$

Exercice 33: (*)

Soient $n \in \mathbb{N}^*$ et $a \in \mathbb{R} \setminus \pi\mathbb{Z}$. Factoriser dans $\mathbb{R}[X]$ le polynôme :

$$X^{2n} - 2(\cos a)X^n + 1.$$

VI Introduction à la décomposition en éléments simples

xercice 34 : Déterminer une primitive de :

$$f: x \mapsto \frac{x^2 + 1}{(x-1)(x-2)(x-3)}$$
.

Exercice 35: (*) Déterminer une primitive de :

$$f: x \mapsto \frac{x^5}{x^4 - 1}.$$

Exercice 36: (\star)

Soit $n \in \mathbb{N}^*$. Déterminer la décomposition en éléments simples de :

$$\frac{n!}{X(X-1)\dots(X-n)}$$

Exercice 37: (★)

1. Décomposer en éléments simples :

$$\frac{3X+8}{X(X+2)}.$$

2. Soit $n \in \mathbb{N}$, calculer:

$$S_n = \sum_{k=1}^n \frac{3k+8}{k(k+2)2^k}.$$

3. En déduire la limite de la suite (S_n) .

Exercice 38: $(\star\star)$

Soit $n \in \mathbb{N}^*$, soient $x_1, \dots, x_n \in \mathbb{R}^*$ deux à deux distincts, soit $\lambda \in \mathbb{R}^*$. Posons :

$$P = \lambda \prod_{k=1}^{n} (X - x_k).$$

1. Montrer que :

$$\forall k \in \llbracket 1, n \rrbracket, P'(x_k) = \lambda \prod_{j \in \llbracket 1, n \rrbracket \setminus \{k\}} (x_k - x_j).$$

2. En déduire que la décomposition en éléments simples de $\frac{1}{P}$ est :

$$\frac{1}{P} = \sum_{k=1}^{n} \frac{1}{P'(x_k)(X - x_k)}.$$

3. En déduire que :

$$\sum_{k=1}^n \frac{1}{x_k P'(x_k)} = -\frac{1}{P(0)}.$$