Exercices du chapitre 14 : Dérivabilité

I Nombre dérivé, fonction dérivée

Exercice 1:

Soit I un intervalle ouvert de \mathbb{R} , soient $a \in I$ et $f \in \mathcal{F}(I,\mathbb{R})$ dérivable en a. Calculer :

$$\lim_{h\to 0}\frac{f(a+h^2)-f(a+h)}{h}.$$

Exercice 2: (\star)

Soit $f \in \mathcal{F}(]-1,1[,\mathbb{R})$ dérivable en 0, soient (a_n) et (b_n) des suites convergeant vers 0 et telles que : $\forall n \in \mathbb{N}, -1 < a_n < 0 < b_n < 1$. Montrer que la suite $\left(\frac{f(b_n)-f(a_n)}{b_n-a_n}\right)$ converge vers f'(0).

Exercice 3: (*)

Soit f la fonction définie sur]-1,1[par $: f(x) = \frac{x}{\ln|x|} \cos \frac{1}{x} \sin x \neq 0$ et f(0) = 0.

- 1. Montrer que f est dérivable sur] 1, 1[.
- 2. On considère les suites définies par :

$$\forall n \in \mathbb{N}, u_n = \frac{1}{\frac{\pi}{2} + 2n\pi}, v_n = \frac{1}{-\frac{\pi}{2} + 2n\pi}.$$

Calculer les limites des suites $(f'(u_n))$ et $(f'(v_n))$.

3. En déduire que la fonction f' n'est pas bornée au voisinage de 0.

Exercice 4: (*)

Etudier la dérivabilité en 0 des fonctions suivantes :

1.
$$f_1: \mathbb{R}^+ \to \mathbb{R}$$
, $x \mapsto \sqrt{x^{n+1} + x^n}$, où $n \in \mathbb{N}^*$,

2.
$$f_2: x \mapsto \begin{cases} x \sin \frac{1}{x} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

3.
$$f_3: x \mapsto \begin{cases} x^2 \sin \frac{1}{x} & \sin x \neq 0 \\ 0 & \sin x = 0 \end{cases}$$
.

Exercice 5:

On considère la fonction définie par :

$$\forall x \in \left[\frac{\pi}{2}, \pi\right[, f(x) = \frac{1}{\sin(x)}.$$

- 1. Montrer que f réalise une bijection vers un intervalle que l'on précisera.
- 2. Sans déterminer f^{-1} , montrer que f^{-1} est dérivable sur un intervalle que l'on précisera et calculer $(f^{-1})'$.

II Propriétés des fonctions dérivables

Exercice 6:

Soit $T \in \mathbb{R}^*$. Soit f une fonction dérivable et T-périodique.

Montrer que f' s'annule une infinité de fois.

Soit f de classe C^1 sur [-1,1] et deux fois dérivable sur]-1,1[telle que f(-1)=-1,f(0)=0 et f(1)=1. Montrer que :

$$\exists c \in]-1,1[,f''(c)=0.$$

Exercice 8: (*)

Soient $a, b, \lambda \in \mathbb{R}$ tels que 0 < a < b, soit f une fonction continue sur [a, b] et dérivable sur [a, b] telle que f(a) = f(b) = 0. Montrer que :

$$\exists c \in]a,b[,f'(c) = -\lambda \frac{f(c)}{c}.$$

Exercice 9: (\star) Soient $a, b \in \mathbb{R}$ tels que a < b, soient $f, g \in \mathcal{F}([a, b], \mathbb{R})$ continues sur [a, b] et dérivables sur [a, b]. Montrer qu'il existe $c \in [a, b]$ tel que :

$$(f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).$$

Exercice 10: $(\star\star)$

Soit $a \in \mathbb{R}$. Soit f une fonction continue sur $[a, +\infty[$ et dérivable sur $]a, +\infty[$ telle que :

$$\lim_{x \to +\infty} f(x) = f(a).$$

On pose:

$$g: \quad [0,1] \quad \to \quad \mathbb{R}$$

$$x \quad \mapsto \quad \left\{ \begin{array}{ll} f\left(\frac{1}{x} + a - 1\right) & \text{si } x \neq 0 \\ f(a) & \text{si } x = 0. \end{array} \right.$$

1. Montrer que g est continue sur [0,1] et dérivable sur]0,1[.

2. En déduire qu'il existe $c \in]a, +\infty[$ tel que :

$$f'(c)=0.$$

Exercice 11: $(\star\star)$

Soit f une application définie et continue sur $[a, +\infty[$, dérivable sur $]a, +\infty[$ telle que $\lim_{x\to +\infty} f(x) = f(a)$. Montrer que :

$$\exists x_0 \in]a, +\infty[, f'(x_0) = 0.$$

Exercice 12: (*) Soit I un intervalle de \mathbb{R} , soient $n, k, l \in \mathbb{N}$ tels que $0 \le l \le k$ et $0 \le l \le n$, soit $f \in \mathcal{F}(I,\mathbb{R})$ n fois dérivable sur I. On suppose que f admet au moins k zéros dans I. Montrer que $f^{(l)}$ admet au moins k-l zéros dans I.

Exercice 13: $(\star\star)$

1. Soient f et g deux fonctions continues sur [a,b] et dérivables sur]a,b[. Montrer que :

$$\exists c \in]a,b[,f'(c)(g(b)-g(a))=g'(c)(f(b)-f(a)).$$

2. En déduire la règle de L'Hôpital : si f et g sont deux fonctions continues sur $V = [x_0 - \alpha, x_0 + \alpha[$ et dérivables sur $V \setminus \{x_0\}$, telles que $f(x_0) = g(x_0) = 0$, et : $\forall x \in V \setminus \{x_0\}$, $g'(x) \neq 0$. Montrer que :

$$\lim_{x \to x_0} \frac{f'(x)}{g'(x)} = l \Rightarrow \lim_{x \to x_0} \frac{f(x)}{g(x)} = l.$$

3. Application: calculer les limites suivantes:

$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$
, $\lim_{x \to 0} \frac{\ln(1+x) - x}{x^2}$.

Exercice 14: Montrer que:

$$\forall k \in \mathbb{N}^*, \, \frac{1}{k+1} \le \ln \frac{k+1}{k} \le \frac{1}{k}.$$

Exercice 15: (*) Soit $f : \mathbb{R} \to \mathbb{R}$ dérivable. Montrer que pour tout x > 0, il existe c > 0 tel que :

$$f(x) - f(-x) = x(f'(c) + f'(-c)).$$

Exercice 16: (\star)

Montrer que :

$$\forall x \in \mathbb{R}^{+*}, \left(\frac{1+x}{x}\right)^x \le e \le \left(\frac{1+x}{x}\right)^{x+1}.$$

En déduire :

$$\forall n \in \mathbb{N}^*, \frac{(n+1)^n}{n!} \le e^n \le \frac{(n+1)^{n+1}}{n!}.$$

Exercice 17:

1. On définit la suite (u_n) par :

$$u_0 \in \mathbb{R}$$
, $\forall n \in \mathbb{N}$, $u_{n+1} = 2 + \frac{1}{2} \sin u_n$.

Etudier la convergence de (u_n) .

2. On définit la suite (u_n) par :

$$u_0 \in \mathbb{R}$$
, $\forall n \in \mathbb{N}$, $u_{n+1} = \cos u_n$.

Etudier la convergence de (u_n) .

Exercice 18: (\star)

Montrer les inégalités suivantes :

- 1. $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}^+, x^{n+1} (n+1)x + n \ge 0$
- 2. $\forall x \in]-1, +\infty[, \frac{x}{1+x} \le \ln(1+x) \le x,$
- 3. $\forall x \in [0, \frac{\pi}{2}], x \cos x < \frac{\pi^2}{16}$
- 4. $\forall (x, y) \in [0, 1]^2, x < y, \frac{y x}{\sqrt{1 x^2}} < \text{Arcsin } y \text{Arcsin } x < \frac{y x}{\sqrt{1 y^2}}$

Exercice 19: Soit:

$$f:]0, +\infty[\rightarrow \mathbb{R}$$

$$x \mapsto e^{-1/x^2}$$

Montrer que f est prolongeable par continuité en 0 et que son prolongement par continuité en 0 est dérivable en 0.

Exercice 20: (**)

Résoudre l'équation différentielle sur \mathbb{R} :

$$x(x-1)y' + (2x-1)y = 1.$$

Exercice 21 : (**) Résoudre l'équation différentielle suivante en utilisant la méthode de variation de la constante :

$$xy' - 2y - x^4 = 0.$$

Exercice 22: $(\star\star)$

2

Résoudre l'équation différentielle suivante :

$$y'' + y = |x| + 1$$
.

III Fonctions de classe C^k

Exercice 23:

Soit n > 2, calculer la dérivée $n^{i\text{ème}}$ de :

$$\varphi: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto (x^2 + 1)e^{2x}.$$

Exercice 24: Déterminer, pour tout $n \in \mathbb{N}$, la dérivée $n^{\text{ième}}$ de :

- 1. $f_1: x \mapsto \cos^3 x$,
- 2. $f_2: x \mapsto e^x \sin x$,
- 3. $f_3: x \mapsto (x^3 + x^2 + 1)e^{-x}$.

Exercice 25: $(\star\star)$

Calculer la dérivée $n^{\text{ième}}$ de $f: x \mapsto x^n (1+x)^n$.

En déduire $\sum_{k=0}^{n} \binom{n}{k}^2$.

Exercice 26: (★★)

Soit $n \in \mathbb{N}$. Déterminer la dérivée (n+1)-ième de :

$$f_n: x \mapsto x^n e^{1/x}$$
.

Exercice 27: $(\star\star)$

Soit $f \in \mathcal{C}^{\infty}([0,1])$ telle que :

$$\forall n \in \mathbb{N}, \forall x \in [0,1], |f^{(n)}(x)| \le x.$$

Montrer que f est la fonction constante nulle.

IV Fonctions convexes

Exercice 28:

Montrer que:

$$\forall x, y \in]1, +\infty[, \ln\left(\frac{x+y}{2}\right) \ge \sqrt{\ln(x)\ln(y)}.$$

Exercice 29: (\star)

- 1. Soit f une fonction convexe et majorée sur \mathbb{R} . Montrer que f est constante.
- 2. Donner un exemple de fonction convexe et majorée sur $]0,+\infty[$ et qui ne soit pas constante.

Exercice 30: $(\star\star)$

Soit $f:[0,1] \to \mathbb{R}$ convexe. Posons:

$$g: \quad \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix} \quad \to \quad \mathbb{R}$$

$$x \quad \mapsto \quad f(x) + f(1 - x).$$

Montrer que g est décroissante.

Exercice 31: $(\star\star)$

Déterminer toutes les fonctions $f: I \to \mathbb{R}$ telle que f soit convexe et concave (c'est-à-dire telle que -f soit convexe).

Exercice 32: $(\star \star \star)$

1. Soit $f: I \to \mathbb{R}$ convexe. Soient $n \in \mathbb{N}^*$, $x_1, \dots, x_n \in I$, $\lambda_1, \dots, \lambda_n \in [0, 1]$ tels que $\sum_{k=1}^n \lambda_k = 1$. Montrer l'inégalité de Jensen :

$$f\left(\sum_{k=1}^{n} \lambda_k x_k\right) \le \sum_{k=1}^{n} \lambda_k f(x_k).$$

2. Applications:

3

(a) Montrer que, pour tout $a_1, a_2, a_3 \in \mathbb{R}^+$:

$$a_1 a_2^2 a_3^3 \le \left(\frac{a_1 + 2a_2 + 3a_3}{6}\right)^6.$$

(b) Soient $n \in \mathbb{N}^*$ et $a_1, ..., a_n \in]0,1]$ tels que : $\sum_{i=1}^n a_i = 1$. Montrer que :

$$\sum_{i=1}^{n} \left(a_i + \frac{1}{a_i} \right)^2 \ge \frac{(n^2 + 1)^2}{n}.$$