Exercices du chapitre 11: Suites numériques

I Limite d'une suite réelle

Exercice 1: $(\star \star \star)$

Soit (u_n) une suite de réels et soit $f: \mathbb{N} \to \mathbb{N}$ une application.

- 1. On suppose f injective. Montrer que si (u_n) converge, alors $(u_{f(n)})$ converge.
- 2. On suppose f surjective. Montrer que si $(u_{f(n)})$ converge, alors (u_n) converge.
- 3. On suppose f bijective. Montrer que (u_n) converge si et seulement si $(u_{f(n)})$ converge.

Soient $a, b \in \mathbb{R}^{+*}$. Etudier la limite de la suite définie par :

$$u_n = \sqrt{(n+a)(n+b)} - n.$$

Déterminer les limites éventuelles des suites :

1.
$$u_n = \sqrt{n^2 + n + 1} - \sqrt{n^2 - n + 1}$$
,

2.
$$u_n = \sqrt{n + \sqrt{n^2 + 1}} - \sqrt{n + \sqrt{n^2 - 1}}$$
,

3.
$$u_n = \frac{n - \sqrt{n^2 + 1}}{n - \sqrt{n^2 - 1}}$$
,

Exercice 4: (*)

Etudier les limites des suites définies par :

1.
$$u_n = \frac{\sin(n^2)}{n}$$
,

2.
$$u_n = \frac{a^n - b^n}{a^n + b^n}, a, b \in \mathbb{R}^{+*},$$

3.
$$u_n = \frac{n^3 + 5n}{5n^3 + \cos n + \frac{1}{n^2}}$$

4.
$$u_n = \frac{2n + (-1)^n}{5n + (-1)^{n+1}}$$
,

5.
$$u_n = \sqrt{n + \sqrt{n^2 + 1}} - \sqrt{n + \sqrt{n^2 - 1}}$$

Déterminer les limites éventuelles des suites :

1.
$$u_n = n^{1/\ln n}$$
,

2.
$$u_n = (\ln n)^{1/n}$$
,

$$3. \ u_n = n^{\frac{\sin n}{n}}$$

1.
$$u_n = n^{1/\ln n}$$
,
2. $u_n = (\ln n)^{1/n}$,
3. $u_n = n^{\frac{\sin n}{n}}$,
4. $u_n = \left(\sin \frac{1}{n}\right)^{1/\ln n}$.

Exercice 6: (\star) Soit (u_n) une suite à termes positifs telle que :

$$\lim_{n\to+\infty} \sqrt[n]{u_n} = l.$$

- 1. Montrer que si l < 1, alors $\lim_{n \to +\infty} u_n = 0$.
- 2. Montrer que si l > 1, alors $\lim_{n \to +\infty} u_n = +\infty$.
- 3. On pose : $\forall n \in \mathbb{N}^*$, $u_n = (1 + \frac{1}{n})^n$. Calculer $\lim_{n\to+\infty} u_n$ et $\lim_{n\to+\infty} \sqrt[n]{u_n}$. Que peut-on en conclure?

Exercice 7: (\star)

Soient (u_n) et (v_n) deux suites réelles convergentes. On définit les suites (x_n) et (y_n) par :

$$\forall n \in \mathbb{N}, x_n = \sup(u_n, v_n), y_n = \inf(u_n, v_n).$$

1. Montrer que:

$$\forall x, y \in \mathbb{R}$$
, $\sup(x, y) = \frac{1}{2}(x + y + |x - y|)$ et $\inf(x, y) = \frac{1}{2}(x + y - |x - y|)$.

2. Montrer que les suites (x_n) et (y_n) convergent et exprimer leurs limites en fonctions de celles de (u_n) et (v_n) .

Exercice 8:

Soient $a, b \in \mathbb{R}$, soient (u_n) et (v_n) deux suites réelles telles que :

$$\forall n \in \mathbb{N}, u_n \leq a, v_n \leq b$$

et

$$\lim_{n \to +\infty} (u_n + v_n) = a + b.$$

Montrer que :

$$\lim_{n \to +\infty} u_n = a \text{ et } \lim_{n \to +\infty} v_n = b.$$

Déterminer les limites éventuelles des suites :

1.
$$u_n = \frac{\lfloor (n + \frac{1}{2})^8 \rfloor}{\lfloor (n - \frac{1}{2})^8 \rfloor}$$
,

$$2. \quad u_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor,$$

Exercice 10: (*)

A l'aide d'un encadrement, montrer que la suite définie par :

$$\forall n \in \mathbb{N}^*, u_n = \sum_{k=1}^n \frac{1}{\sqrt{n^2 + k}}$$

est convergente et donner sa limite.

Exercice 11: (*)

On pose:

$$\forall n \in \mathbb{N}^*, u_n = \frac{1}{n!} \sum_{k=1}^n k!$$

Etudier la convergence de (u_n) .

Exercice 12: $(\star\star)$

Soit (u_n) une suite de réels décroissante tendant vers 0 telle que :

$$\lim n(u_n+u_{n+1})=1.$$

Montrer que:

$$\lim nu_n = \frac{1}{2}.$$

Suites monotones

Exercice 13: $(\star\star)$

Soient A et B deux parties non vides majorées de \mathbb{R} .

- 1. Montrer que, si $A \subset B$, alors sup $A \leq \sup B$.
- 2. Montrer que $A \cup B$ est majorée et déterminer $\sup(A \cup B)$.
- 3. Montrer que $A \cap B$ est majorée. Peut-on déterminer $\sup(A \cap B)$?

Exercice 14: $(\star\star)$

Déterminer, si elles existent, les bornes supérieure et inférieure des ensembles suivants :

1.
$$A = \{(-1)^n (1 - \frac{1}{n}), n \in \mathbb{N}^* \},$$

2.
$$B = \left\{ \frac{1}{n} - \frac{1}{p}, (n, p) \in (\mathbb{N}^*)^2 \right\}$$
.
Exercice 15: $(\star \star)$

Soit A une partie non vide bornée de \mathbb{R} . Montrer que l'ensemble $\{|x-y|, x, y \in A\}$ possède une borne supérieure. On appelle ce nombre diamètre de A et on le note d(A). Montrer que:

$$d(A) \le \sup A - \inf A$$
 et $\forall \varepsilon > 0$, $\exists (x, y) \in A^2$, $|x - y| > \sup A - \inf A - 2\varepsilon$.

Conclure.

Exercice 16: (*)

Soit A une partie non vide majorée de \mathbb{R} . Soit $a \in \mathbb{R}$.

Montrer que:

 $a = \sup(A) \iff \forall x \in A, x \le a$ et il existe une suite (u_n) de A telle que $a = \lim u_n$.

Exercice 17: $(\star\star)$

1. Soit $n \in \mathbb{N}$, montrer qu'il existe un unique $x_n \in]0, +\infty[$ tel que :

$$\ln(x_n) + x_n = n.$$

- 2. Montrer que la suite (x_n) est croissante.
- 3. Montrer que:

$$\lim x_n = +\infty.$$

Exercice 18: (*)

On considère la suite définie par :

$$u_0 = 2 \text{ et } \forall n \in \mathbb{N}, u_{n+1} = u_n^2.$$

- 1. Montrer que : $\forall n \in \mathbb{N}, u_n \ge 2$.
- 2. Montrer que la suite (u_n) est croissante.
- 3. Montrer que la suite (u_n) n'est pas majorée.
- 4. En déduire la limite de (u_n) .

Exercice 19: $(\star\star)$

Soit (u_n) une suite de réels telle que :

$$\forall n \in \mathbb{N}, \frac{1}{2} < u_n < 1.$$

On pose $v_0 = u_0$ et, pour tout $n \in \mathbb{N}^*$, $v_n = \frac{v_{n-1} + u_n}{1 + u_n v_{n-1}}$. Montrer que la suite (v_n) converge et trouver sa limite.

On commencera par prouver que pour tout $n \in \mathbb{N}$, $0 < v_n < 1$ et que (v_n) est monotone.

Exercice 20: (*) Etudier la suite définie par :

$$u_0 = \frac{3}{2}$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{u_n^2}{3} + \frac{2}{3}$.

Exercice 21: (*) Etudier la suite réelle définie par :

$$u_0 = \frac{1}{2}$$
 et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{3}{16} + u_n^2$.

Exercice 22: (**) Etudier les suites réelles définies par :

$$u_0 \in \mathbb{R} \text{ et } \forall n \in \mathbb{N}, \ u_{n+1} = \frac{3}{16} + u_n^2.$$

Exercice 23: $(\star\star)$

Etudier les suites réelles (u_n) définies par :

$$\forall n \in \mathbb{N}, u_{n+1} = \ln(1+2u_n).$$

Exercice 24: (*)

Soient $a, b \in \mathbb{R}$ tels que 0 < a < b. On pose $u_0 = a$, $v_0 = b$ et :

$$\forall n \in \mathbb{N}, u_{n+1} = \sqrt{u_n v_n}, \quad v_{n+1} = \frac{u_n + v_n}{2}.$$

1. Montrer que:

$$\forall n \in \mathbb{N}, 0 < u_n < v_n$$
.

2. Montrer que:

$$\forall n \in \mathbb{N}, \ v_n - u_n \le \frac{1}{2^n} (v_0 - u_0).$$

3. Montrer que (u_n) et (v_n) sont adjacentes.

Exercice 25: (*)

Soient (u_n) et (v_n) les suites définies par :

$$u_0 = 0, \forall n \in \mathbb{N}, u_{n+1} = \frac{u_n + 1}{u_n + 2},$$

$$v_0 = 2, \forall n \in \mathbb{N}, v_{n+1} = \frac{v_n + 1}{v_n + 2}.$$

Montrer que (u_n) et (v_n) sont adjacentes.

Exercice 26: (★★)

On pose:

$$\forall n \in \mathbb{N}^*, u_n = \sum_{k=0}^n \frac{1}{k!}, v_n = u_n + \frac{1}{nn!}.$$

- 1. Montrer que (u_n) et (v_n) sont adjacentes. Soit l leur limite commune.
- 2. Montrer que l est irrationnel.

Exercice 27: (★★)

Montrer que les suites suivantes sont adjacentes :

1.
$$u_n = \sum_{k=3}^n \frac{1}{k^2 + 1}$$
, $v_n = u_n + \frac{1}{n} - \frac{1}{2n^2}$, $n \ge 3$,

2.
$$u_n = \sum_{k=1}^n \frac{1}{k^{\alpha} k!}, v_n = u_n + \frac{1}{n^{\alpha+1} n!}, n \ge 1, \alpha \in \mathbb{R}^{+*}.$$

III Suites extraites

Exercice 28:

Montrer que la suite définie par :

$$\forall n \in \mathbb{N}, \ u_n = \frac{5n^2 + \sin n}{3(n+2)^2 \cos \frac{n\pi}{5}}$$

est divergente.

Exercice 29: (*)

Soit (x_n) une suite réelle. On suppose que les suites (x_{2n}) , (x_{2n+1}) et (x_{3n}) convergent. Montrer que la suite (x_n) converge.

Exercice 30: $(\star\star)$

Pour tout $n \in \mathbb{N}^*$, on note $H_n = \sum_{k=1}^n \frac{1}{k}$.

1. Montrer que:

$$\forall m \in \mathbb{N}, H_{2^{m+1}} - H_{2^m} \ge \frac{1}{2}.$$

2. En déduire que $\lim_{n \to +\infty} H_n = +\infty$.

Exercice 31: (\star)

3

On dit qu'une suite (u_n) est périodique ssi :

$$\exists p \in \mathbb{N}^*, \forall n \in \mathbb{N}, u_{n+p} = u_n.$$

Montrer que toute suite réelle périodique et convergente est constante.

Exercice 32: (★★)

Soit $n \in \mathbb{N}^*$. On pose $S_n = \sum_{k=1}^n \frac{(-1)^k}{k}$. Montrer que les suites (S_{2n}) et (S_{2n+1}) sont adjacentes. En déduire que la suite (S_n) converge.

Exercice 33: $(\star \star \star)$

Soit $\alpha \in \mathbb{R}$ tel que $\frac{\alpha}{\pi} \notin \mathbb{Z}$. Montrer que l'existence d'une des deux limites $\lim_{n \to +\infty} \cos(n\alpha)$ et $\lim_{n \to +\infty} \sin(n\alpha)$ entraı̂ne celle de l'autre et que l'existence de ces deux limites conduirait à une contradiction. Conclure.

IV Suites complexes

Exercice 34: (\star) Etudier la convergence de la suite complexe (z_n) définie par :

- 1. $z_n = x_n + iy_n$ avec, $x_0, y_0 \in \mathbb{R}$ et pour tout $n \in \mathbb{N}$, $x_{n+1} = \frac{1}{2}(x_n y_n)$ et $y_{n+1} = \frac{1}{2}(x_n + y_n)$,
- 2. pour tout $n \in \mathbb{N}$, $z_{n+1} = \frac{i}{2}z_n + 1$.