Chapitre 9: Equations différentielles

Dans tout le chapitre $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} et I est un intervalle de \mathbb{R} .

I Equations différentielles linéaire du premier ordre

1.1 Définition

Définition 1

Soient $a, b: I \to \mathbb{K}$ des fonctions continues sur I.

- On dit que $y: I \to \mathbb{K}$ est solution de l'équation différentielles linéaire d'ordre un y' + a(x)y = b(x) si et seulement si : y est dérivable sur I et $\forall x \in I$, y'(x) + a(x)y(x) = b(x).
- On appelle équation homogène (ou sans second membre) associée à (E), l'équation :

$$y' + a(x)y = 0 \quad (E_0)$$

1.2 Résolution de l'équation homogène

Proposition 1

Soit $a: I \to \mathbb{K}$ une fonction continue sur I et $A: I \to \mathbb{K}$ une primitive de a sur I.

Les solutions sur I de (E_0) : y' + a(x)y = 0 sont les fonctions $\begin{cases} I & \to & \mathbb{K} \\ x & \mapsto & \lambda e^{-A(x)} \end{cases}$, $\lambda \in \mathbb{K}$.

 ➡ Exemple 1: Résoudre l'équation différentielle :

$$y' + xy = 0.$$

Corollaire 1

Soit $a \in \mathbb{K}$, les solutions sur \mathbb{R} de y' + ay = 0 sont les fonctions :

$$\mathbb{R}$$
 \rightarrow \mathbb{K} λe^{-ax} , $\lambda \in \mathbb{K}$

Corollaire 2

Soit $a:I\to\mathbb{K}$ une fonction continue sur I soient $x_0\in I$ et $y_0\in\mathbb{K}$. Il existe une unique solution de l'équation

$$y' + a(x)y = 0$$
 telle que $y(x_0) = y_0$ qui est :
$$\begin{cases} I & \to & \mathbb{K} \\ x & \mapsto & y_0 e^{-\int_{x_0}^x a(t)dt} \end{cases} .$$

Remarque: Le système constitué de l'équation différentielle et de la condition intiale :

$$\begin{cases} y' + a(x)y = 0 \\ y(x_0) = y_0 \end{cases}$$

s'appelle un problème de Cauchy.

1.3 Résolution de l'équation avec second membre

Proposition 2

Soient $a, b: I \to \mathbb{K}$ des fonctions continues sur I.

L'équation y' + a(x)y = b(x) admet au moins une solution.

Proposition 3

Soient $a, b: I \to \mathbb{K}$ continues sur I et (E): y' + a(x)y = b(x).

Si y_p est une solution particulière de (E) et si S_0 est l'ensemble des solutions de l'équation homogène associée à (E), alors l'ensemble S des solutions de (E) est :

$$S = \{y_p + y_0 , y_0 \in S_0\}.$$

Remarque : Les solutions de l'équation avec second membre sont la somme **des** solutions de l'équation homogène et d'**une** solution particulière.

 ➡ Exemple 2: Résoudre l'équation différentielle :

$$y' + xy = x.$$

 ➡ Exemple 3: Résoudre l'équation différentielle :

$$\frac{du}{dt} + \frac{u}{\tau} = \frac{E}{\tau}.$$

Méthode 1

L'équation différentielle :

$$y' + ay = b\cos(\alpha x) + c\sin(\alpha x),$$

avec $a, b, c, \alpha \in \mathbb{R}$ admet une solution particulière de la forme :

$$x \mapsto A\cos(\alpha x) + B\sin(\alpha x)$$
,

avec $A, B \in \mathbb{R}$.

 ➡ Exemple 4: Résoudre l'équation différentielle :

$$y' - y = -2\sin x.$$

Exemple 5: Déterminer les fonctions $f:[0,1] \to \mathbb{R}$ dérivables telles que :

$$\forall x \in [0,1], f'(x) - f(x) = f(0) + f(1).$$

Proposition 4

Soit (*E*) l'équation différentielle y' + a(x)y = b(x) où a et b sont continues sur I. Soient $x_0 \in I$ et $y_0 \in \mathbb{K}$. Il existe une unique solution $y: I \to \mathbb{K}$ de (*E*) telle que $y(x_0) = y_0$.

1.4 Principe de superposition

Proposition 5 (Principe de superposition)

Soient $a, b: I \to \mathbb{K}$ des fonctions continues.

On suppose que $b = \sum_{k=1}^{n} b_k$ avec $n \in \mathbb{N}^*$ et, pour tout $k \in [1, n]$, $b_k : I \to \mathbb{K}$ continue.

Soit $k \in [1, n]$, soit y_k une solution sur I de $y' + a(x)y = b_k(x)$.

Alors la fonction $y = \sum_{k=1}^{n} y_k$ est une solution de y' + a(x)y = b(x).

 ➡ Exemple 6: Résoudre l'équation différentielle :

$$y' + 2y = 2 + 3e^x - 4\sin(2x)$$
.

2

1.5 Méthode de la variation de la constante

Méthode 2 : Recherche d'une solution particulière : Méthode de variation de la constante

Soit l'équation différentielle (*E*) y' + a(x)y = b(x) où a et b sont continues sur I. Soit A une primitive de a sur I.

- Les solutions sur I de l'équation homogène E_0) y' + a(x)y = 0 sont les fonctions $\begin{cases} I & \to & \mathbb{K} \\ x & \mapsto & \lambda e^{-A(x)} \end{cases}$, $\lambda \in \mathbb{K}$.
- On cherche une solution particulière de (E) sur I de la forme $y: \mathbb{R} \to \mathbb{K}$ $x \mapsto \lambda(x)e^{-A(x)}$ où λ est une fonction dérivable.

On a:

$$y' + a(x)y = b(x) \iff \forall x \in I, \ \lambda'(x)e^{-A(x)} + \lambda(x)(-A'(x))e^{-A(x)} + a(x)\lambda(x)e^{-A(x)} = b(x)$$
$$\iff \forall x \in I, \ \lambda'(x) = b(x)e^{A(x)}$$

La détermination d'une solution particulière de (E) se ramène ainsi à la recherche d'une primitive de $x \mapsto b(x)e^{A(x)}$ sur I.

➡ **Exemple 7:** Résoudre l'équation différentielle :

$$(1 + x^2)y' - xy = x(1 + x^2).$$

 \leftrightarrows **Exemple 8:** Résoudre l'équation différentielle sur \mathbb{R}^{+*} :

$$xy' + y = \cos(x).$$

II Équation différentielle linéaire du second ordre à coefficients constants

2.1 Définition

Définition 2

Soient $a, b, c \in \mathbb{K}$, $a \neq 0$ et $f : I \to \mathbb{K}$ une fonction continue.

- On dit que y est solution de l'équation différentielle linéaire d'ordre 2 à coefficients constants ay'' + by' + cy = f(x)(E) si et seulement si y est deux fois dérivable et : $\forall x \in I$, ay''(x) + by'(x) + cy(x) = f(x).
- On appelle équation homogène associée à (*E*) l'équation : av'' + bv' + cv = 0 (*E*₀).

2.2 Résolution de l'équation homogène

Définition 3

Soit $a, b, c \in \mathbb{K}$, $a \neq 0$ et soit (E_0) l'équation différentielle ay'' + by' + cy = 0. L'équation $ar^2 + br + c = 0$ est appelée **équation caractéristique** de (E_0) .

Proposition 6

Soit $a,b,c\in\mathbb{K},\ a\neq 0$ et soit (E_0) l'équation différentielle ay''+by'+cy=0.

Soit $r \in \mathbb{C}$. La fonction $x \mapsto e^{rx}$ est solution de (E) sur \mathbb{R} si et seulement si r est solution de l'équation caractéristique $ar^2 + br + c = 0$.

Lemme 1

Soient $a,b\in\mathbb{K},\ a\neq 0$. Soit r une racine de l'équation caractéristique $ar^2+br+c=0$. Soit $y:\mathbb{R}\to\mathbb{K}$ deux fois dérivable. Posons $z:\begin{array}{ccc}\mathbb{R}&\to&\mathbb{C}\\x&\mapsto&e^{-rx}y(x)\end{array}$. On a : ay''+by'+cy=0 ssi az''+(2ar+b)z'=0.

Théorème 1

Soit $a, b, c \in \mathbb{K}$, $a \neq 0$ et (E_0) : ay'' + by' + cy = 0.

Si $b^2 - 4ac = 0$ alors l'équation caractéristique $ar^2 + br + c = 0$ admet une racine double $r_0 \in \mathbb{K}$.

Les solutions de (E_0) sont alors les fonctions :

$$\begin{array}{ccc} \mathbb{R} & \to & \mathbb{K} \\ x & \mapsto & (\lambda x + \mu)e^{r_0x} & \text{avec } \lambda, \mu \in \mathbb{K}. \end{array}$$

 ➡ Exemple 9: Résoudre l'équation différentielle :

$$y'' - 2y' + y = 0.$$

Théorème 2

Soit $a, b, c \in \mathbb{C}$, $a \neq 0$ et (E_0) : ay'' + by' + cy = 0.

Si $b^2 - 4ac \neq 0$ alors l'équation caractéristique $ar^2 + br + c = 0$ admet deux racines r_1 et r_2 dans \mathbb{C} .

Les solutions de (E_0) sont alors les fonctions :

$$\mathbb{R} \quad \to \quad \mathbb{C}$$

$$x \quad \mapsto \quad \lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x} \qquad \text{avec } \lambda_1, \lambda_2 \in \mathbb{C}.$$

 ➡ Exemple 10: Résoudre l'équation différentielle :

$$y'' - 2iy' - 2y = 0.$$

Théorème 3

Soit $a, b, c \in \mathbb{R}$, $a \neq 0$ et (E_0) : ay'' + by' + cy = 0.

Si $b^2 - 4ac > 0$ alors l'équation caractéristique $ar^2 + br + c = 0$ admet deux racines r_1 et r_2 dans \mathbb{R} .

Les solutions de (E_0) sont alors les fonctions :

$$\mathbb{R} \to \mathbb{R}$$

$$x \mapsto \lambda_1 e^{r_1 x} + \lambda_2 e^{r_2 x} \quad \text{avec } \lambda_1, \lambda_2 \in \mathbb{R}.$$

$$y'' - 4y' + 3y = 0.$$

Théorème 4

Soit $a, b, c \in \mathbb{R}$, $a \neq 0$ et (E_0) : ay'' + by' + cy = 0.

Si $b^2 - 4ac < 0$ alors l'équation caractéristique $ar^2 + br + c = 0$ admet deux racines complexes conjuguées non réelles $\alpha \pm i\beta$, (avec $(\alpha, \beta) \in \mathbb{R} \times \mathbb{R}^*$).

Les solutions de (E_0) sont alors les fonctions :

$$\mathbb{R} \to \mathbb{R}$$

$$x \mapsto (\lambda \cos(\beta x) + \mu \sin(\beta x)) e^{\alpha x} \quad \text{avec } \lambda, \mu \in \mathbb{R}.$$

➡ **Exemple 12:** Résoudre l'équation différentielle :

$$y'' + 2y' + 2y = 0.$$

Arr **Exemple 13:** Résoudre l'équation différentielle suivante sur \mathbb{R}^{+*} :

$$x^2 y'' + y = 0.$$

On pourra poser $t = \ln x$.

Arr **Exemple 14:** Résoudre l'équation différentielle suivante sur $\mathbb R$:

$$y'' + 4xy' + (3 + 4x^2)y = 0.$$

On pourra poser $z = e^{x^2} y$.

2.3 Résolution de l'équation avec second membre

Proposition 7

Soient $a, b, c \in \mathbb{K}$, $a \neq 0$, soit $f : I \to \mathbb{K}$ continue.

L'équation ay'' + by' + cy = f(x) admet au moins une solution.

Proposition 8

Soient $a, b, c \in \mathbb{K}$, $a \neq 0$, soit $f : I \to \mathbb{K}$ continue.

Soit (*E*) : ay'' + by' + cy = f(x).

Si y_p est une solution particulière de (E) et si S_0 est l'ensemble des solutions de l'équation homogène associée à (E), alors l'ensemble S des solutions de (E) est :

$$S = \{y_p + y_0, y_0 \in S_0\}.$$

Méthode 3 : Recherche d'une solution particulière

- L'équation différentielle $ay'' + by' + cy = Ae^{\lambda x}$ (*E*) où $a, b, c, A, \lambda \in \mathbb{K}$ admet une solution de la forme :
 - $-x \mapsto Be^{\lambda x}$ si λ n'est pas solution de l'équation caractéristique;
 - x → $Bxe^{\lambda x}$ si λ est racine simple de l'équation caractéristique;
 - $-x \mapsto Bx^2e^{\lambda x}$ si λ est racine double de l'équation caractéristique;

où $B \in \mathbb{K}$.

- L' équation différentielle $ay'' + by' + cy = A_1 \cos(\beta x) + A_2 \sin(\beta x)$ (E) où $a, b, c, A_1, A_2 \in \mathbb{R}$ avec $\beta \in \mathbb{R}^*$ admet une solution de la forme :
 - $-x \mapsto B_1 \cos(\beta x) + B_2 \sin(\beta x)$ si $i\beta$ n'est pas solution de l'équation caractéristique;
 - $-x \mapsto B_1 x \cos(\beta x) + B_2 x \sin(\beta x)$ si $i\beta$ est racine simple de l'équation caractéristique.

où B_1 , B_2 ∈ \mathbb{R} .

➡ **Exemple 15:** Résoudre l'équation différentielle :

$$-3y'' - 2y' + y = \cos(x)$$
.

2.4 Principe de superposition

Proposition 9: Principe de superposition

Soient $a,b,c\in\mathbb{K},\ a\neq 0$, soit $f:I\to\mathbb{K}$ continue. On suppose que $f=\sum_{k=1}^n f_k$ avec $n\in\mathbb{N}^*$ et, pour tout $k\in[1,n]$,

 $f_k: I \to \mathbb{K}$ continue.

Soit $k \in [1, n]$, soit y_k une solution sur I de $ay'' + by' + cy = f_k(x)$.

Alors la fonction $y = \sum_{k=1}^{n} y_k$ est une solution de ay'' + by' + cy = f(x).

➡ **Exemple 16:** Résoudre l'équation différentielle :

$$y'' - 3y' + 2y = e^{-x} + e^{2x}.$$

2.5 Problème de Cauchy

Proposition 10

Soit (*E*) l'équation différentielle ay'' + by' + cy = f(x) où $a, b, c \in \mathbb{K}$, $a \neq 0$, et f continue sur I. Soient $x_0 \in I$ et $y_0, y_0' \in \mathbb{K}$.

Il existe une unique solution $y: I \to \mathbb{K}$ de (E) telle que $\begin{cases} y(x_0) = y_0 \\ y'(x_0) = y'_0 \end{cases}$

Remarque : Comme l'équation différentielle est d'ordre 2, la condition initiale doit être double pour avoir l'unicité de la solution.