Chapitre 3: Arithmétique

I Division d'entiers

1.1 Multiples et diviseurs d'un entier

Définition 1

Soit $(a, b) \in \mathbb{Z}^2$. On dit que a divise b si et seulement si il existe $c \in \mathbb{Z}$ tel que b = ac. On note a|b. On dit aussi dans ce cas que a est un diviseur de b ou que b est un multiple de a.

Remarque : Soit $n \in \mathbb{Z}$.

- n est pair ssi 2|n,
- n est impair ssi 2|n-1.

Proposition 1

- 1. $\forall a \in \mathbb{Z}, a | a$
- 2. $\forall a, b \in \mathbb{Z}$, $(a|b \text{ et } b|a) \Leftrightarrow |a| = |b|$
- 3. $\forall a, b, c \in \mathbb{Z}$, $(a|b \text{ et } b|c) \Rightarrow a|c$

Preuve. Soient $a, b, c \in \mathbb{Z}$.

- 1. a = a.1 et $1 \in \mathbb{Z}$ donc $a \mid a$.
- 2. Supposons a|b et b|a. Alors, il existe $k_1, k_2 \in \mathbb{Z}$ tels que $b=k_1a$ et $a=k_2b$. Donc $a=k_1k_2a$.

Si a = 0, alors b = 0 donc |a| = |b|.

Sinon, $k_1 k_2 = 1$ donc $k_1 = k_2 = 1$ ou $k_1 = k_2 = -1$, donc $a = \pm b$, ainsi |a| = |b|.

Supposons |a| = |b| alors $a = \pm b$ et $b = \pm a$ donc a|b et b|a.

3. Supposons que a|b et b|c. Alors, il existe $k_1,k_2\in\mathbb{Z}$ tels que $b=k_1a$ et $c=k_2b$. Ainsi, $c=(k_2k_1)a$ avec $k_1k_2\in\mathbb{Z}$. Ainsi, a divise c.

Proposition 2

- 1. $\forall a, b, c \in \mathbb{Z}$, $(a|b \text{ et } a|c) \Rightarrow (\forall (p,q) \in \mathbb{Z}^2, a|(pb+qc))$
- 2. $\forall a, b, c, d \in \mathbb{Z}$, $(a|b \text{ et } c|d) \Rightarrow ac|bd$
- 3. $\forall a, b \in \mathbb{Z}, a|b \Rightarrow (\forall n \in \mathbb{N}, a^n|b^n)$

Remarque : Ecrire uniquement une implication ne signifie pas que la réciproque est fausse. La réciproque du troisième point est vraie mais n'est pas intéressante.

Preuve. Soient $a, b, c, d \in \mathbb{Z}$.

- 1. Supposons que a|b et a|c.
- 2. Supposons que a|b et a|c. Alors il existe $k_1, k_2 \in \mathbb{Z}$ tels que $b=k_1a$ et $c=k_2a$. Soient $p,q\in\mathbb{Z}$. On a : $pb+qc=(pk_1+qk_2)a$ avec $pk_1+qk_2\in\mathbb{Z}$. Donc a|(pb+qc).
- 3. Supposons que a|b et c|d. Alors il existe $k_1, k_2 \in \mathbb{Z}$ tels que $b = k_1 a$ et $d = k_2 c$. D'où par produit : $bd = (k_1 a)(k_2 c) = (k_1 k_2)ac$ avec $k_1 k_2 \in \mathbb{Z}$ et donc ac|bd.
- 4. Supposons que a|b. Alors il existe $k_1 \in \mathbb{Z}$ tel que $b = k_1 a$. Donc $a^n = k_1^n a^n$ avec $k_1^n \in \mathbb{Z}$, et donc $a^n|b^n$.

Proposition 3

Soient $a, b \in \mathbb{Z}$. Supposons que $b \neq 0$ et $a \mid b$, alors :

 $|a| \le |b|$.

Preuve. Comme a|b, il existe $k \in \mathbb{Z}$ tel que b = ka.

Comme $b \neq 0$ alors $k \neq 0$ et comme $k \in \mathbb{Z}$, on a donc $|k| \geq 1$.

Ainsi, comme $|a| \ge 0$: $|b| = |k| . |a| \ge |a|$.

1.2 Division euclidienne

Théorème 1

Soient $a \in \mathbb{Z}$ et $b \in \mathbb{N}^*$. Alors il existe un unique couple $(q,r) \in \mathbb{Z} \times \mathbb{N}$ tel que

$$a = bq + r$$
 et $0 \le r < b$.

On dit que q est le **quotient** et r le **reste** dans la **division euclidienne** de a par b.

Remarque:

- $\mathbb{Z} \times \mathbb{N}$ est le produit cartésien de \mathbb{Z} et \mathbb{N} , on a : $(q, r) \in \mathbb{Z} \times \mathbb{N} \Leftrightarrow (q \in \mathbb{Z} \text{ et } r \in \mathbb{N})$. On utilise cette notation afin d'avoir un objet (le couple) qui soit unique.
- Si $a \in \mathbb{N}$, alors $q \in \mathbb{N}$.

Preuve.

□ Exemple 1: Soit $n \in \mathbb{N}^*$. On suppose que le reste de la division euclidienne de n par 7 est 2. Que valent les restes des divisions euclidiennes de n^2 et n^3 par 7?

 $rac{r}{>}$ Exemple 2: Soient $n, m \in \mathbb{N}^*$. On suppose que le reste de la division euclidienne de n par m est 8 et que le reste de la division euclidienne de 2n par m est 5. Que vaut m?

II pgcd

2.1 Définition

Définition 2

Soient $a,b \in \mathbb{Z}$ tels que $b \neq 0$. Le PGCD de a et b est le plus grand des diviseurs strictement positifs communs à a et b, il est noté pgcd (a,b) ou $a \land b$:

$$\operatorname{pgcd}(a, b) = a \wedge b = \max\{d \in \mathbb{N}^*, d | a \operatorname{et} d | b\}.$$

Remarque:

- Le maximum, noté max existe car il s'agit d'ensembles d'entiers majoré.
- Par symétrie de la définition, il suffit d'avoir *a* ou *b* non nul.
- Si a = 0 et $b \neq 0$, comme : $\forall d \in \mathbb{N}^*$, $d \mid a$, alors pgcd (a, b) = b.
- Avec cette définition, pour calculer un pgcd, on doit énumérer tous les diviseurs de a et b. Par exemple, pour a = 45 et b = 30,
 - les diviseurs de *a* sont : 1,3,5,9,15 et 45,
 - les diviseurs de *b* sont : 1,2,3,5,6,10,15 et 30.

Donc: $\operatorname{pgcd}(a, b) = 15$.

Proposition 4

Soient $a, b \in \mathbb{N}^*$.

$$\operatorname{pgcd}(a,b) = a \Leftrightarrow a|b.$$

Preuve. • Si pgcd (a, b) = a comme, par définition, pgcd (a, b)|b, on a a|b.

• Si a|b, alors a|a et a|b, de plus, si n|a et n|b alors $n \le a$ donc: $\operatorname{pgcd}(a,b) = a$.

2.2 Algorithme d'Euclide

Proposition 5

Soient $a, b \in \mathbb{N}^*$. Soit r le reste de la division de a par b. Les entiers a et b ont les mêmes diviseurs que b et r et on a donc :

$$\operatorname{pgcd}(a, b) = \operatorname{pgcd}(b, r)$$
.

Preuve.

Algorithme 1 (Algorithme d'Euclide)

Soient $a, b \in \mathbb{N}^*$.

- On pose $r_0 = a$ et $r_1 = b$. On a alors $\operatorname{pgcd}(a, b) = \operatorname{pgcd}(r_0, r_1)$.
- Soit $k \in \mathbb{N}$, on suppose $r_k > 0$ et $r_{k+1} > 0$ construits tels que $\operatorname{pgcd}(a,b) = \operatorname{pgcd}(r_k,r_{k+1})$. Soit r_{k+2} le reste de la division euclidienne de r_k par r_{k+1} . On a donc $0 \le r_{k+2} < r_{k+1}$ et :

$$\operatorname{pgcd}(r_{k+1},r_{k+2})=\operatorname{pgcd}(r_k,r_{k+1})=\operatorname{pgcd}(a,b).$$

De plus, si $r_{k+2} = 0$, alors $r_{k+1} | r_k$ donc pgcd $(r_k, r_{k+1}) = r_{k+1}$, ainsi :

$$\operatorname{pgcd}(a,b) = r_{k+1}$$
.

• La suite $(r_k)_{k\geq 1}$ est une suite strictement décroissante d'entiers naturels et est donc finie. Ainsi l'algorithme s'arrête et le pgcd est le dernier reste non nul.

• Calculer pgcd (45, 30).

• Calculer pgcd (360, 105).

2.3 Propriétés

Proposition 6

Soient $a, b, d \in \mathbb{N}^*$. On a :

 $(d|a \text{ et } d|b) \Longleftrightarrow d|\operatorname{pgcd}(a,b).$

Preuve.

Proposition 7: Homogénéité du PGCD

 $\forall a, b, c \in \mathbb{N}^*$, $\operatorname{pgcd}(ca, cb) = c.\operatorname{pgcd}(a, b)$

Preuve. Posons $d = \operatorname{pgcd}(a, b)$ et $e = \operatorname{pgcd}(ca, cb)$.

• On a d|a et d|b, donc cd|ca et cd|cb. Ainsi : cd|pgcd(ca,cb) = e. Donc il existe $k \in \mathbb{N}^*$ tel que : e = kcd.

- e|ca donc kcd|ca, ainsi kd|a. De même, kd|b donc kd|pgcd(a,b)=d. Ainsi k|1 donc k=1.
- On a donc:

 $\operatorname{pgcd}(ca,cb)=e=kcd=cd=c.\operatorname{pgcd}(a,b).$

 \Rightarrow **Exemple 4:** Soient $a, b, c \in \mathbb{N}^*$ tels que pgcd $(a, b) = \operatorname{pgcd}(a, c) = 1$. Montrer que :

$$\operatorname{pgcd}(a,bc) = 1.$$

Corollaire 1

$$\mathbb{Q} = \left\{ \frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{N}^*, \operatorname{pgcd}(p, q) = 1 \right\}.$$

Preuve.

III ppcm

3.1 Définition

Définition 3

Soient $a, b \in \mathbb{Z}$ tels que $b \neq 0$. Le PPCM de a et b est le plus petit des multiples strictement positifs communs à a et b, il est noté ppcm (a, b) ou $a \lor b$:

$$\operatorname{ppcm}(a,b) = a \vee b = \min\{m \in \mathbb{N}^*, a | m \text{ et } b | m\}.$$

Remarque:

• Le minimum, noté min existe car il s'agit d'ensembles d'entiers minoré.

- Par symétrie de la définition, il suffit d'avoir a ou b non nul.
- Avec cette définition, pour calculer un ppcm, on doit énumérer les premiers multiples de a et b. On peut s'arrêter à ab qui est un multiple commun de a et b.

Par exemple, pour a = 6 et b = 9,

- les multiples de *a* sont : 6,12,18,24,30,36,42,48,54, ...
- les multiples de b sont : 9,18,27,36,45,54, . . .

Donc: ppcm (a, b) = 18.

Proposition 8

Soient $a, b \in \mathbb{N}^*$.

 $\operatorname{ppcm}(a, b) = a \Leftrightarrow b|a.$

Preuve. • Si ppcm (a, b) = a comme, par définition, b | ppcm(a, b), on a b | a.

• Si b|a, alors a|a et b|a, de plus, si a|m et b|m alors $a \le m$ donc: ppcm (a,b) = a.

3.2 Propriétés

Proposition 9

Soient $a, b, m \in \mathbb{N}^*$. On a:

 $(a|m \text{ et } b|m) \iff \operatorname{ppcm}(a,b)|m.$

Preuve.

Proposition 10

Soient $a, b \in \mathbb{N}^*$, on a :

pgcd(a, b).ppcm(a, b) = a.b.

Preuve. Posons $d = \operatorname{pgcd}(a, b)$ et $m = \operatorname{ppcm}(a, b)$. Alors, il existe $\alpha, \beta, \gamma, \delta \in \mathbb{N}$ tels que :

$$a = \alpha d$$
, $b = \beta d$, $m = \gamma a$, $m = \delta b$.

- $\alpha\beta d = \beta a = \alpha b$ donc $a|\alpha\beta d$ et $b|\alpha\beta d$, ainsi $m|\alpha\beta d$. Donc, il existe $k \in \mathbb{N}$ tel que : $mk = \alpha\beta d$.
- $mk = \gamma ak = a\beta \text{ donc } \beta = \gamma k$, donc $k|\beta$.
- $mk = \delta bk = b\alpha$ donc $\alpha = \delta k$, donc $k \mid \alpha$.
- Ainsi $k | \operatorname{pgcd}(\alpha, \beta)$. Or $\operatorname{pgcd}(a, b) = d = \operatorname{pgcd}(\alpha d, \beta d) = d \operatorname{pgcd}(\alpha, \beta)$. Donc: $\operatorname{pgcd}(\alpha, \beta) = 1$, ainsi k = 1.
- D'où $m = \alpha \beta d$, ainsi $md = \alpha d\beta d = ab$.
- Arr Exemple 5: Soit $n \in \mathbb{N}^*$. Calculer $\operatorname{pgcd}(n, 2n+1)$ et $\operatorname{ppcm}(n, 2n+1)$.

IV Nombres premiers

4.1 Ensemble des nombres premiers

Définition 4

Un nombre $p \in \mathbb{N}$ est dit premier ssi $p \ge 2$ et :

$$\forall d \in \mathbb{N}^*, d | p \Rightarrow (d = 1 \text{ ou } d = p),$$

c'est-à-dire les seuls diviseurs de p sont 1 et lui même.

Proposition 11

Tout nombre entier $n \ge 2$ possède au moins un diviseur premier.

Preuve. On le montre par récurrence forte sur $n \ge 2$.

- Pour n = 2, la propriété est vraie puisque 2 est premier.
- Soit $n \ge 2$, supposons que tout nombre premier $k \in [2, n]$ admet au moins un diviseur premier.
 - Si n + 1 est premier, le résultat est établi.
 - Sinon il existe $d \in \mathbb{N}$ tels que d|(n+1) avec $2 \le d \le n$. On applique l'hypothèse de récurrence à d: il existe donc p premier tel que p|d. Ainsi comme d|(n+1), on a p|(n+1).

Ceci prouve la propriété au rang n + 1.

• Ainsi, tout entier naturel $n \ge 2$ admet au moins un diviseur premier.

Proposition 12

L'ensemble des nombres premiers est infini.

Preuve.

4.2 Décomposition en facteurs premiers

Théorème 2

Tout entier supérieur ou égal à 2 admet une décomposition en produit de nombres premiers, unique à l'ordre des facteurs près. Autrement dit , si $n \in \mathbb{N}$ et $n \ge 2$, alors il existe $r \in \mathbb{N}^*$, des nombres premiers deux à deux distincts p_1, \ldots, p_r , et des entiers naturels non nuls $\alpha_1, \ldots, \alpha_r$ tels que $n = p_1^{\alpha_1} \ldots p_r^{\alpha_r} = \prod_{i=1}^r p_i^{\alpha_i}$.

Remarque : La preuve de ce théorème est hors programme. L'existence se montre assez facilement par récurrence forte mais l'unicité est beaucoup plus compliquée à prouver.

 \Rightarrow **Exemple 6:** Soient $a, b \in \mathbb{N}^*$. On suppose que pgcd (a, b) = 1. Montrer que :

$$\forall n, m \in \mathbb{N}^*, \operatorname{pgcd}(a^m, b^n) = 1.$$

Proposition 13

Soient $a, b \in \mathbb{N} \setminus \{0, 1\}$ tels que $a = p_1^{\alpha_1} \dots p_r^{\alpha_r} = \prod_{i=1}^r p_i^{\alpha_i}$ et $b = p_1^{\beta_1} \dots p_r^{\beta_r} = \prod_{i=1}^r p_i^{\beta_i}$ où p_1, p_2, \dots, p_r est sont des nombres premiers distincts deux à deux, et $\alpha_1,...,\alpha_r \in \mathbb{N}$, $\beta_1,...,\beta_r \in \mathbb{N}$ (éventuellement nuls pour tenir compte d'un nombre premier qui pourrait ne diviser qu'un seul des deux entiers a ou b). Alors :

$$\operatorname{pgcd}(a,b) = p_1^{\min(\alpha_1,\beta_1)} \dots p_r^{\min(\alpha_r,\beta_r)} = \prod_{i=1}^r p_i^{\min(\alpha_i,\beta_i)}$$

$$\operatorname{ppcm}\left(a,b\right) = p_1^{\max(\alpha_1,\beta_1)} \cdots p_r^{\max(\alpha_r,\beta_r)} = \prod_{i=1}^r p_i^{\max(\alpha_i,\beta_i)}$$

- Posons $d = \prod_{i=1}^{r} p_i^{\min(\alpha_i, \beta_i)}$.

 - Pour tout $i \in [1, r]$, $\min(\alpha_i, \beta_i) \le \alpha_i$. Donc: $a = \prod_{i=1}^r p_i^{\alpha_i \min(\alpha_i, \beta_i) + \min(\alpha_i, \beta_i)} = d$. $\prod_{i=1}^r p_i^{\alpha_i \min(\alpha_i, \beta_i)}$. Ainsi, $d \mid a$ et, de même, $d \mid b$.

 Posons $\alpha = \frac{a}{d}$ et $\beta = \frac{b}{d}$. On a $\alpha, \beta \in \mathbb{N}^*$ et: $\alpha = \prod_{i=1}^r p_i^{\alpha_i \min(\alpha_i, \beta_i)}$ et $\beta = \prod_{i=1}^r p_i^{\beta_i \min(\alpha_i, \beta_i)}$. Soit $i \in [1, r]$, on a: $\alpha_i \min(\alpha_i, \beta_i) = 0$ ou $\beta_i \min(\alpha_i, \beta_i) = 0$ ainsi $p_i \nmid \alpha$ ou $p_i \nmid \beta$. Ainsi α et β n'ont pas de facteur premier commun donc pgcd $(\alpha, \beta) = 1$.
 - Donc:

$$\operatorname{pgcd}(a, b) = \operatorname{pgcd}(d\alpha, d\beta) = d\operatorname{pgcd}(\alpha, \beta) = d.$$

• On a: $\operatorname{pgcd}(a,b)\operatorname{ppcm}(a,b) = ab = \prod_{i=1}^{r} p_i^{\alpha_i + \beta_i}$. D'où $\operatorname{ppcm}(a,b) \prod_{i=1}^{r} p_i^{\min(\alpha_i,\beta_i)} = \prod_{i=1}^{r} p_i^{\alpha_i + \beta_i}$.

D'où ppcm
$$(a,b)$$
 $\prod_{i=1}^{r} p_i^{\min(\alpha_i,\beta_i)} = \prod_{i=1}^{r} p_i^{\alpha_i+\beta_i}$

Ainsi, ppcm
$$(a, b) = \prod_{i=1}^{r} p_i^{\alpha_i + \beta_i - \min(\alpha_i, \beta_i)}$$
.
Soit $i \in [1, r]$ on $a : \alpha_i + \beta_i - \min(\alpha_i, \beta_i) = [1, r]$

Soit $i \in [1, r]$, on a : $\alpha_i + \beta_i - \min(\alpha_i, \beta_i) = \max(\alpha_i, \beta_i)$. En effet :

- Si $\alpha_i \ge \beta_i$. Alors, $\min(\alpha_i, \beta_i) = \beta_i$ et $\max(\alpha_i, \beta_i) = \alpha_i$. Ainsi, $\alpha_i + \beta_i - \min(\alpha_i, \beta_i) = \alpha_i + \beta_i - \beta_i = \alpha_i = \max(\alpha_i, \beta_i)$.
- Si $\alpha_i < \beta_i$. Alors, $\min(\alpha_i, \beta_i) = \alpha_i$ et $\max(\alpha_i, \beta_i) = \beta_i$. Ainsi, $\alpha_i + \beta_i - \min(\alpha_i, \beta_i) = \alpha_i + \beta_i - \alpha_i = \beta_i = \max(\alpha_i, \beta_i)$.

 \Rightarrow Exemple 7: Déterminer les entiers naturels non nuls b tels que ppcm (28, b) = 140.