Chapitre 24: Déterminants

Dans tout le chapitre n désignera un entier naturel non nul, E désignera un \mathbb{K} -espace vectoriel **de dimension** n et \mathbb{K} désignera \mathbb{R} ou \mathbb{C} .

I Déterminant d'une matrice carrée

1.1 Définition

Définition 1

Il existe une unique application $\det: \mathcal{M}_n(\mathbb{K}) \to \mathbb{K}, M \mapsto \det(M)$ vérifiant les propriétés suivantes :

1. det est linéaire par rapport à chaque colonne de sa variable : soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de colonnes C_1, \ldots, C_n , alors, pour tout $j \in [1, n]$, l'application :

$$\begin{array}{ccc} \mathcal{M}_{n,1} & \to & \mathbb{K} \\ X & \mapsto & \det(C_1|\dots|C_{j-1}|X|C_{j+1}|\dots|C_n) \end{array}$$

est linéaire,

- 2. det est alternée : soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de colonnes C_1, \ldots, C_n , s'il existe $i \neq j$ tel que $C_i = C_j$, alors $\det(A) = 0$,
- 3. $\det(I_n) = 1$.

Corollaire 1

L'application det est antisymétrique : soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice de colonnes C_1, \ldots, C_n , soient $i \neq j$, soit B la matrice obtenue à partir de A en échangeant les colonnes i et j, on a : $\det(B) = -\det(A)$.

Notation : Soit $A = (a_{i,j}) \in \mathcal{M}_n(\mathbb{K})$.

On note:

$$\det(A) = \left| \begin{array}{ccc} a_{1,1} & \dots & a_{1,n} \\ \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,n} \end{array} \right|.$$

Remarque: En pratique:

Corollaire 2

Soit $A \in \mathcal{M}_n(\mathbb{K})$, soit $\lambda \in \mathbb{K}$, on a :

$$\det(\lambda A) = \lambda^n \det(A)$$
.

Remarque : Le déterminant n'est pas linéaire, on ne "sort" pas le facteur λ mais on le sort de chaque colonne. En général $\det(A+B) \neq \det(A) + \det(B)$.

1.2 Propriétés sur les colonnes

Proposition 1

Soit $A \in \mathcal{M}_n(\mathbb{K})$ une matrice carré.

- 1. Si une colonne de A est nulle, alors det(A) = 0.
- 2. Si deux colonnes de A sont égales, alors det(A) = 0.

Proposition 2

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soit B la matrice de $\mathcal{M}_n(\mathbb{K})$ obtenue à partir de A en faisant :

• $C_i \leftarrow \lambda C_i$ avec $i \in [1, n]$, $\lambda \in \mathbb{K}^*$. Alors:

$$\det(B) = \lambda \det(A),$$

• $C_i \leftrightarrow C_j$ avec $(i, j) \in [1, n]^2$ et $i \neq j$. Alors:

$$\det(B) = -\det(A),$$

• $C_j \leftarrow C_j + \mu C_i$, avec $(i, j) \in [1, n]^2$, $i \neq j$ et $\mu \in \mathbb{K}$. Alors:

$$det(B) = det(A)$$
.

1.3 Propriétés sur les lignes

Proposition 3

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On a:

$$det(A^T) = det(A)$$
.

Corollaire 3

Le déterminant vérifie les mêmes propriétés vis à vis des lignes que des colonnes :

- det est linéaire par rapport à chacune des lignes de sa variable,
- det est antisymétrique par rapport aux lignes de sa variable,
- si A à une ligne nulle alors det(A) = 0,
- si A à deux lignes égales alors det(A) = 0.

Proposition 4

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Soit B la matrice de $\mathcal{M}_n(\mathbb{K})$ obtenue à partir de A en faisant :

• $L_i \leftarrow \lambda L_i$ avec $i \in [1, n]$, $\lambda \in \mathbb{K}^*$. Alors:

$$\det(B) = \lambda \det(A),$$

• $L_i \leftrightarrow L_j$ avec $(i, j) \in [1, n]^2$ et $i \neq j$. Alors:

$$\det(B) = -\det(A),$$

• $L_i \leftarrow L_i + \mu L_i$, avec $(i, j) \in [1, n]^2$, $i \neq j$ et $\mu \in \mathbb{K}$. Alors:

$$det(B) = det(A)$$
.

1.4 Cas particuliers

Proposition 5 : Déterminant d'une matrice diagonale

Soient $\lambda_1, ..., \lambda_n \in \mathbb{K}$. On a:

$$\begin{vmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & \lambda_n \end{vmatrix} = \prod_{k=1}^n \lambda_k.$$

Proposition 6 : Déterminant d'une matrice triangulaire

Soit $T = (t_{i,j}) \in \mathcal{M}_n(\mathbb{K})$ une matrice triangulaire (supérieure ou inférieure) de diagonale $(\lambda_1, \dots, \lambda_n)$. Alors :

$$\det(T) = \prod_{k=1}^{n} \lambda_k.$$

Autrement dit:

$$\begin{vmatrix} \lambda_1 & & & & \\ & \ddots & * & & \\ & 0 & \ddots & \\ & & & \lambda_n \end{vmatrix} = \prod_{k=1}^n \lambda_k \quad \text{et} \quad \begin{vmatrix} \lambda_1 & & & \\ & \ddots & 0 & \\ & * & \ddots & \\ & & & \lambda_n \end{vmatrix} = \prod_{k=1}^n \lambda_k$$

Proposition 7 : Déterminant d'une matrice de taille 2

Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{K})$. On a:

$$\det(A) = \left| \begin{array}{cc} a & c \\ b & d \end{array} \right| = ad - bc.$$

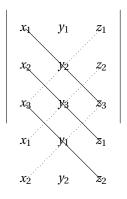
Proposition 8 : Déterminant d'une matrice de taille 3 (Règle de Sarrus

Soit
$$A = \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} \in \mathcal{M}_3(\mathbb{K})$$
. On a:

$$\det(A) = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix} = x_1 y_2 z_3 + x_3 y_1 z_2 + x_2 y_3 z_1 - x_3 y_2 z_1 - x_1 y_3 z_2 - x_2 y_1 z_3.$$

Remarque:

• La formule en dimension 3 se retrouve par la règle de Sarrus :



- On a recopié sous le déterminant, les deux premières lignes de la matrice.
- On fait le produit des termes de chaque diagonale (représentée par un trait plein) en attribuant à chaque terme un signe +.
- On fait le produit des termes de chaque antidiagonale (représentée par un trait en pointillés) en attribuant à chaque terme un signe -.
- La somme de ces termes donne le déterminant de la matrice.
- La règle de Sarrus n'est valable que pour les matrices de taille 3, il ne faut surtout pas la généraliser!

Exemple 1 : Calculer $d_1 = \begin{vmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 3 & 1 & 1 \end{vmatrix}$, et $d_2 = \begin{vmatrix} 1 & 2 & 3 \\ 2 & 0 & 0 \\ 2 & -1 & 1 \end{vmatrix}$.

1.5 Propriétés du déterminant d'une matrice

Proposition 9

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$, on a :

det(AB) = det(A). det(B).

Corollaire 4

Soit $A \in \mathcal{M}_n(\mathbb{K})$, soit $p \in \mathbb{N}$. On a :

 $\det(A^p) = \det(A)^p.$

 \Rightarrow **Exemple 5 :** Soit *n* impair et soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 - A + I_n = 0$. Déterminer A^3 et en déduire $\det(A)$.

Proposition 10

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Alors:

$$A \in GL_n(\mathbb{K}) \iff \det(A) \neq 0.$$

De plus, dans ce cas $det(A^{-1}) = \frac{1}{det(A)}$.

Corollaire 5

Soient $A \in \mathcal{M}_n(\mathbb{K})$, $P \in GL_n(\mathbb{K})$. On a:

 $\det(P^{-1}AP) = \det(A)$

1.6 Développement par rapport à une ligne ou par rapport à une colonne

Proposition 11

Soit $M=(m_{i,j})\in\mathcal{M}_n(\mathbb{K})$. Pour tout $i,j\in [\![1,n]\!]$, on pose $A_{i,j}$ la matrice carrée d'ordre n-1 obtenue en supprimant dans M la ligne i et la colonne j. On peut calculer le déterminant de M:

• en développant suivant la j-ème colonne :

$$\det(M) = \sum_{i=1}^{n} (-1)^{i+j} m_{i,j} \det(A_{i,j}).$$

• en développant suivant la *i*-ème ligne :

$$\det(M) = \sum_{j=1}^{n} (-1)^{i+j} m_{i,j} \det(A_{i,j}).$$

Remarque : Cette formule permet d'exprimer un déterminant de taille n en fonction de n déterminants de taille n-1. Elle a donc deux applications :

- obtenir une formule de récurrence pour calculer un déterminant de taille *n*,
- calculer un déterminant de petite taille en appliquant la formule jusqu'à se ramener à un déterminant de taille 3 que l'on calcule grâce à la règle de Sarrus.
- Plus il y a de termes $m_{i,j}$ nuls, moins il y a de termes à calculer dans la somme. On préfère donc de développer par rapport à une ligne ou une colonne contenant le plus de zéros possible. Sinon, on fait d'abord des opérations élémentaires afin de faire apparaître des zéros puis on utilise le développement.
- En pratique, on applique cette formule en rayant des lignes et des colonne.

Soit
$$D = \begin{vmatrix} 1 & 2 & 0 & -1 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix}$$
 On va calculer D en effectuant un développement par rapport à la première colonne.

– Le terme $(-1)^{i+j}$ correspond à une alternance de signe "en damier" :

$$D = \begin{vmatrix} 1 & 2 & 0 & -1 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix}.$$

Les cases grises correspondent à un signe + (la première case a un signe +) et la cases blanches à un signe -.

Exemple 6 : Soit $D = \begin{vmatrix} 1 & 2 & 0 & -1 \\ 0 & 1 & -1 & 1 \\ 1 & 0 & 2 & 1 \\ 1 & 1 & 1 & 0 \end{vmatrix}$. Calculer D en effectuant un développement par rapport à la deuxième ligne.

□ **Exemple 7 :** Soit θ ∈ [0, π], soit, pour tout n ∈ N*, d_n le déterminant de taille n:

$$d_n = \begin{vmatrix} 2\cos(\theta) & 1 & 0 & \dots & 0 \\ 1 & 2\cos(\theta) & \ddots & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & 1 & \ddots & 1 \\ 0 & \dots & 0 & 1 & 2\cos(\theta) \end{vmatrix}$$

- 1. Exprimer d_{n+2} en fonction de d_{n+1} et d_n .
- 2. En déduire d_n pour $n \in \mathbb{N}^*$.

 $\Leftrightarrow \textbf{Exemple 8:} \ \text{Soient} \ x_1, \dots, x_n \in \mathbb{K}. \ \text{Montrer que:}$

$$\begin{vmatrix} 1 & x_1 & x_1^2 & \dots & x_1^{n-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{n-1} \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & x_n & x_n^2 & \dots & x_n^{n-1} \end{vmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i).$$

Ce déterminant est appelé déterminant de Vandermonde.

II Déterminant d'un endomorphisme

2.1 Définition

Proposition 12

Soit $u \in \mathcal{L}(E)$. Soit \mathcal{B} une base de E. Alors $\det(\operatorname{Mat}_{\mathcal{B}}(u))$ ne dépend pas du choix de la base \mathcal{B} .

Définition 2

Soit $u \in \mathcal{L}(E)$. On appelle déterminant de u et on note $\det(u)$ le nombre :

$$det(u) = det(Mat_{\mathcal{B}}(u)),$$

où $\mathcal B$ est une base de E.

2.2 Propriétés

Proposition 13

Soit $f \in \mathcal{L}(E)$, soit $\lambda \in \mathbb{K}$.

- $\det(Id_E) = 1$,
- $\det(\lambda f) = \lambda^n \det f$, où $n = \dim E$.

Remarque : On a $\det(\lambda Id_E) = \lambda^n$ et donc $\det(-Id_E) = (-1)^n$.

Proposition 14

Soient $f, g \in \mathcal{L}(E)$.

 $\det(f\circ g)=\det(f).\det(g).$

Proposition 15

Soient $f \in \mathcal{L}(E)$.

 $f \in GL(E) \iff \det(f) \neq 0.$

De plus, dans ce cas : $\det(f^{-1}) = \frac{1}{\det(f)}$.

 $\Rightarrow \textbf{Exemple 3: Soit } a \in \mathbb{R}, \textbf{ soit} \qquad u: \quad \mathbb{R}_2[X] \quad \rightarrow \quad \mathbb{R}_2[X] \\ P \quad \mapsto \quad (X^2 + 1)P'' - 3XP' + aP. \quad .$

Pour quelles valeurs de *a*, *u* est-elle bijective?

$$\Rightarrow \textbf{Exemple 4:} \textbf{Soit} \quad \begin{array}{ccc} u \colon & \mathbb{R}_n[X] & \to & \mathbb{R}_n[X] \\ & P & \mapsto & P(X+1) - P(X). \end{array}$$
 Calculer $\det(u)$.

III Déterminant d'une famille de vecteurs dans une base

3.1 Définition

Définition 3

Soit $\mathcal{B} = (e_1, \dots, e_n)$, soient (x_1, \dots, x_n) une famille de n vecteurs de E.

On appelle déterminant de la famille (x_1, \ldots, x_n) dans la base \mathcal{B} et on note det $\mathcal{B}(x_1, \ldots, x_n)$ le nombre :

$$\det \beta(x_1,\ldots,x_n) = \det \big(\operatorname{Mat}_{\beta}(x_1,\ldots,x_n) \big).$$

3.2 Propriétés

Le déterminant d'une famille de vecteurs dans une base étant le déterminant d'une matrice, on peut utiliser tous les résultats vus sur le déterminant d'une matrice.

Proposition 16

Soit \mathcal{B} une base de E, soit $(x_1, ..., x_n) \in E^n$. $(x_1, ..., x_n)$ est une base de E ssi :

$$\det_{\mathcal{B}}(x_1,\ldots,x_n)\neq 0.$$

Exemple 2 : Soit $t \in \mathbb{R}$. On pose $x_1 = (t, 3, -1)$, $x_2 = (1, -1, t)$ et $x_3 = (1, t, -1)$.

Pour quelles valeurs de t, (x_1, x_2, x_3) forme une base de \mathbb{R}^3 ?

Proposition 17

Soit $f \in \mathcal{L}(E)$.

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E. On a :

$$\det(f) = \det_{\mathcal{B}}(f(e_1), \dots, f(e_n)).$$

Proposition 18

Soit $A \in \mathcal{M}_n(\mathbb{K})$, soient C_1, \ldots, C_n les colonnes de A. Soit \mathcal{B} la base canonique de $\mathcal{M}_{n,1}(\mathbb{K})$. On a :

$$\det(A) = \det_{\mathcal{B}}(C_1, \dots, C_n).$$