Chapitre 20 : Matrices et applications linéaires

Dans tout le chapitre \mathbb{K} désignera \mathbb{R} ou \mathbb{C} et E un \mathbb{K} espace vectoriel de dimension finie.

I Matrice d'une application linéaire dans des bases

1.1 Matrice d'une famille de vecteurs

Définition 1 : Matrice d'un vecteur

Soient E un \mathbb{K} -espace vectoriel de dimension finie n et $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

Soit $x \in E$. Il existe un unique n-uplet $(x_1, ..., x_n) \in \mathbb{K}^n$ tel que $x = \sum_{i=1}^n x_i e_i$.

On appelle matrice du vecteur x dans la base \mathcal{B} la matrice colonne de $\mathcal{M}_{n,1}(\mathbb{K})$ notée $\mathrm{Mat}_{\mathcal{B}}(x)$ dont les coefficients sont les coordonnées de x dans la base \mathcal{B} . On note

$$\operatorname{Mat}_{\mathcal{B}}(x) = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$$

Définition 2 : Matrice d'une famille de vecteurs

Soient E un \mathbb{K} -espace vectoriel de dimension finie n.

Soit $\mathcal{B} = (e_1, \dots, e_n)$ une base de E.

Soit $\mathcal{F} = (u_1, \dots, u_p)$, une famille de vecteurs de E.

Soit $j \in [1, p]$, soient $(m_{1,j}, ..., m_{n,j})$ les coordonnées de u_j dans \mathcal{B} , c'est-à-dire : $u_j = \sum_{i=1}^n m_{i,j} e_i$.

On appelle matrice de la famille ${\mathcal F}$ dans la base ${\mathcal B}$ et on note ${\rm Mat}_{\mathcal B}({\mathcal F})$ la matrice :

$$\operatorname{Mat}_{\mathcal{B}}(\mathcal{F}) = (m_{i,j})_{i \in [\![1,n]\!], j \in [\![1,p]\!]} = \begin{pmatrix} m_{1,1} & \dots & m_{1,j} & \dots & m_{1,p} \\ \vdots & & \vdots & & \vdots \\ m_{i,1} & \dots & m_{i,j} & \dots & m_{i,p} \\ \vdots & & \vdots & & \vdots \\ m_{n,1} & \dots & m_{n,j} & \dots & m_{n,p} \end{pmatrix} \in \mathcal{M}_{n,p}(\mathbb{K}).$$

- 1. Soit $E = \mathbb{K}^3$ et $\mathcal{B} = (e_1, e_2, e_3)$ sa base canonique. Soit $x_1 = (1, 2, 3)$, $x_2 = (2, 0, 1)$ vecteurs de E et $\mathcal{F} = (x_1, x_2)$. Calculer $\operatorname{Mat}_{\mathcal{B}}(\mathcal{F})$.
- 2. Soit $E = \mathbb{R}^2$. Soit $e_1 = (1,1)$, $e_2 = (2,-1)$ et $\mathcal{B} = (e_1,e_2)$. Soient $x_1 = (3,0)$, $x_2 = (1,1)$, $x_3 = (7,1)$ et $\mathcal{F} = (x_1,x_2,x_3)$. Calculer $\operatorname{Mat}_{\mathcal{B}}(\mathcal{F})$.
- 3. Posons $E = \mathbb{R}_2[X]$ et notons \mathcal{B} la base canonique de E. Soit $\mathcal{F} = (X+1,3X-2,X^2+X)$. Calculer $\operatorname{Mat}_{\mathcal{B}}(\mathcal{F})$.

1.2 Matrice d'une application linéaire

Définition 3

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finies.

Soit $p = \dim E$ et $n = \dim F$.

Soient $\mathcal{B} = (e_1, ..., e_p)$ une base de E et $\mathcal{C} = (f_1, ..., f_n)$ une base de F.

Soit $u \in \mathcal{L}(E, F)$.

Soit $j \in [1, p]$, soient $(m_{1,j}, ..., m_{n,j})$ les coordonnées de $u(e_j)$ dans \mathcal{C} , c'est-à-dire : $u(e_j) = \sum_{i=1}^n m_{i,j} f_i$.

On appelle matrice de u dans les bases \mathcal{B} et \mathcal{C} , et on note $\mathrm{Mat}_{\mathcal{B},\mathcal{C}}(u)$ la matrice de $\mathcal{M}_{n,p}(\mathbb{K})$ définie par :

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u) = (m_{i,j})_{i \in [\![1,n]\!], j \in [\![1,p]\!]} = \begin{pmatrix} m_{1,1} & \dots & m_{1,j} & \dots & m_{1,p} \\ \vdots & & \vdots & & \vdots \\ m_{i,1} & \dots & m_{i,j} & \dots & m_{i,p} \\ \vdots & & \vdots & & \vdots \\ m_{n,1} & \dots & m_{n,j} & \dots & m_{n,p} \end{pmatrix} \in \mathcal{M}_{n,p}(\mathbb{K})$$

Dans le cas où E = F et $\mathcal{B} = \mathcal{C}$, on appelle matrice de u dans la base \mathcal{B} et on note $\mathrm{Mat}_{\mathcal{B}}(u)$ la matrice :

$$\operatorname{Mat}_{\mathcal{B}}(u) = \operatorname{Mat}_{\mathcal{B},\mathcal{B}}(u) \in \mathcal{M}_n(\mathbb{K}).$$

Remarque : Mat $\mathcal{B}, \mathcal{C}(u) = \text{Mat}_{\mathcal{C}}(u(\mathcal{B}))$.

 \Rightarrow **Exemple 2:** On admet que toutes les applications de cet exemple sont linéaires et on considèrera que \mathcal{B} est la base canonique de l'espace de départ et \mathcal{C} est la base canonique de l'espace d'arrivée. Déterminer $\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)$ pour :

1.
$$u: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (x - y, y - z).$

2.
$$u: \mathbb{R}^3 \to \mathbb{R}$$

 $(x, y, z) \mapsto x - y + 4z.$

3.
$$u: \mathbb{R}_2[X] \rightarrow \mathbb{R}_2[X]$$

 $P \mapsto P - XP'.$

4.
$$u: \mathbb{R}_3[X] \rightarrow \mathbb{R}^3$$

 $P \mapsto (P(-1), P(0), P(1)).$

5.
$$u: \mathbb{C} \to \mathbb{C}$$
 $z \mapsto e^{i\theta}z$ avec \mathbb{C} vu comme un \mathbb{R} -espace vectoriel (rotation de centre l'origine et d'angle θ).

⇔ Exemple 3:

Soit E un espace vectoriel ayant pour base $\mathcal{B} = (e_1, e_2, e_3, e_4)$. Reconnaître l'application linéaire f telle que :

Proposition 1

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et $\mathcal{B} = (e_1, ..., e_n)$ une base de E. Alors

$$\operatorname{Mat}_{\mathcal{B}}(Id_{E}) = I_{n}$$

1.3 Matrices et applications linéaires

Proposition 2

Soit E et F deux \mathbb{K} -espaces de dimensions finies respectivement égales à p et n, munis respectivement des bases \mathcal{B} , \mathcal{C} .

Alors l'application : $\begin{array}{ccc} \Phi \colon & \mathcal{L}(E,F) & \to & \mathcal{M}_{n,p}(\mathbb{K}) \\ & u & \mapsto & \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u) \end{array} \text{ est un isomorphisme.}$

En particulier:

$$\forall u, v \in \mathcal{L}(E, F), (u = v \iff \text{Mat}_{\mathcal{B}, \mathcal{C}}(u) = \text{Mat}_{\mathcal{B}, \mathcal{C}}(v)).$$

Corollaire 1

Soit E et F deux \mathbb{K} -espaces vectoriels de dimensions respectives p et n. Alors, $\mathcal{L}(E, F)$ est de dimension finie et

$$\dim(\mathcal{L}(E, F)) = np = \dim(E)\dim(F)$$

1.4 Matrices et coordonnées

Proposition 3

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finies respectivement égales à p et n.

Soit $\mathcal{B} = (e_1, \dots, e_p)$ une base de E, soit $\mathcal{C} = (f_1, \dots, f_n)$ une base de F.

Soit $u \in \mathcal{L}(E, F)$, soit $A = \text{Mat}_{\mathcal{B}, \mathcal{C}}(u)$.

Soit $x \in E$ de coordonnées $(x_1, ..., x_p)$ dans \mathcal{B} .

Soit
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathcal{M}_{p,1}(\mathbb{K})$$
, c'est-à-dire $X = \operatorname{Mat}_{\mathcal{B}}(x)$.

Soient $(y_1, ..., y_n)$ les coordonnées de u(x) dans C.

Soit
$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \mathcal{M}_{n,1}(\mathbb{K})$$
, c'est-à-dire $Y = \operatorname{Mat}_{\mathcal{C}}(u(x))$.

Alors:

$$Y = AX$$
.

 \Rightarrow **Exemple 4:** Soit \mathcal{B} (resp. \mathcal{C}) la base canonique de \mathbb{R}^3 (resp. \mathbb{R}^2). Soit

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 1 & -1 \end{array} \right).$$

Déterminer $u \in \mathcal{L}(\mathbb{R}^3, \mathbb{R}^2)$ tel que Mat $_{\mathcal{B},\mathcal{C}}(u) = A$.

1.5 Opérations sur les matrices de deux applications linéaires

Proposition 4 : Matrice d'une combinaison linéaire

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finies munis respectivement des bases \mathcal{B} et \mathcal{C} . Soient $u, v \in \mathcal{L}(E, F)$ et $\lambda, \mu \in \mathbb{K}$, alors :

$$\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(\lambda u + \mu v) = \lambda \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u) + \mu \operatorname{Mat}_{\mathcal{B},\mathcal{C}}(v).$$

Proposition 5 : Matrice d'une composée

Soient E, F et G trois \mathbb{K} -espaces vectoriels de dimension finies munis respectivement des bases $\mathcal{B}, \mathcal{B}', \mathcal{B}''$. Soient $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$. Alors :

$$\operatorname{Mat}_{\mathcal{B},\mathcal{B}''}(v \circ u) = \operatorname{Mat}_{\mathcal{B}',\mathcal{B}''}(v) \times \operatorname{Mat}_{\mathcal{B},\mathcal{B}'}(u).$$

${\bf Corollaire~2}$

Soit E un \mathbb{K} -espace vectoriel de dimension finie muni d'une base \mathcal{B} . Soit $u \in \mathcal{L}(E)$ et soit $n \in \mathbb{N}$. Alors :

$$\operatorname{Mat}_{\mathcal{B}}(u^n) = \operatorname{Mat}_{\mathcal{B}}(u)^n$$
,

où $u^n = u \circ \cdots \circ u$ et $\operatorname{Mat}_{\mathcal{B}}(u)^n = \operatorname{Mat}_{\mathcal{B}}(u) \cdot \cdots \cdot \operatorname{Mat}_{\mathcal{B}}(u)$.

Proposition 6

Soient E et F deux \mathbb{K} -espaces vectoriels de <u>même dimension</u> munis respectivement des bases \mathcal{B} et \mathcal{C} . Soit $u \in \mathcal{L}(E,F)$

u est un isomorphisme si et seulement si Mat $_{\mathcal{B},\mathcal{C}}(u)$ est inversible.

On a alors $\left(\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)\right)^{-1} = \operatorname{Mat}_{\mathcal{C},\mathcal{B}}\left(u^{-1}\right)$.

Corollaire 3

Soit E un \mathbb{K} -espace vectoriel de dimension finie n muni d'une base \mathcal{B} . Soit $u \in \mathcal{L}(E)$. Alors :

$$u \in GL(E) \iff \operatorname{Mat}_{\mathcal{B}}(u) \in GL_n(\mathbb{K}).$$

On a alors $\left(\operatorname{Mat}_{\mathcal{B}}(u)\right)^{-1} = \operatorname{Mat}_{\mathcal{B}}\left(u^{-1}\right)$.

- Arr Exemple 5: Soit $f: \mathbb{R}_3[X] \to \mathbb{R}_3[X], P \mapsto P(X+1) P'$.
 - 1. Ecrire la matrice A de f dans la base canonique.
 - 2. La matrice A de f est-elle inversible? Si oui, calculer son inverse.
 - 3. Que peut-on en déduire pour f?

II Application linéaire canoniquement associée à une matrice, rang d'une matrice

2.1 Application linéaire canoniquement associée à une matrice

Définition 4

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

Soit \mathcal{B} la base canonique de \mathbb{K}^p , soit \mathcal{C} la base canonique de \mathbb{K}^n .

L'unique application linéaire $u \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ telle que :

$$Mat_{\mathcal{B},\mathcal{C}}(u) = A$$

est appelée application linéaire canoniquement associée à A.

⇔ **Exemple 6:** Posons:

$$A = \left(\begin{array}{rrr} 1 & 0 & 0 \\ 1 & 0 & -1 \\ 2 & 1 & 0 \end{array}\right).$$

Déterminer l'application linéaire canoniquement associée à A.

Remarque : Si on identifie \mathbb{K}^n avec $\mathcal{M}_{n,1}(\mathbb{K})$ et \mathbb{K}^p avec $\mathcal{M}_{p,1}(\mathbb{K})$ (convention usuelle), l'application canoniquement associée à A est :

$$\begin{array}{cccc} u \colon & \mathcal{M}_{p,1}(\mathbb{K}) & \to & \mathcal{M}_{n,1}(\mathbb{K}) \\ & X & \mapsto & AX \end{array}$$

2.2 Noyau et image d'une matrice

Définition 5

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

• On appelle noyau de A et on note Ker A le sous-ensemble de $\mathcal{M}_{p,1}(\mathbb{K})$ défini par :

$$\operatorname{Ker} A = \{X \in \mathcal{M}_{p,1}(\mathbb{K}) \text{ , } AX = 0\}$$

• On appelle image de A en note $\operatorname{Im} A$ le sous-ensemble de $\mathcal{M}_{n,1}(\mathbb{K})$ défini par :

$$\begin{split} \operatorname{Im} A &= \{Y \in \mathcal{M}_{n,1}(\mathbb{K}) \;,\; \exists X \in \mathcal{M}_{p,1}(\mathbb{K}), \, Y = AX \} \\ &= \{AX \;,\; X \in \mathcal{M}_{p,1}(\mathbb{K}) \} \end{split}$$

4

Remarque : En notant u l'application canoniquement associée à A. On a :

$$(x_1, ..., x_p) \in \operatorname{Ker} u \Longleftrightarrow \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \operatorname{Ker} A,$$

$$(y_1, \dots, y_n) \in \operatorname{Im} u \Longleftrightarrow \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} \in \operatorname{Im} A.$$

- Exemple 7: Posons $A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$.
 - 1. Déterminer Ker(A) et Im(A).
 - 2. Soit u_1 l'application linéaire canoniquement associée à A. En déduire $Ker(u_1)$ et $Im(u_1)$.
 - 3. Soit \mathcal{B} la base canonique de $\mathbb{R}_2[X]$, soit $u_2 \in \mathcal{L}(\mathbb{R}_2[X])$ telle que $\operatorname{Mat}_{\mathcal{B}}(u_2) = A$. En déduire $\operatorname{Ker}(u_2)$ et $\operatorname{Im}(u_2)$.

Proposition 7

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

- Ker A est un sous-espace vectoriel de $\mathcal{M}_{p,1}(\mathbb{K})$.
- Im *A* est un sous-espace vectoriel de $\mathcal{M}_{n,1}(\mathbb{K})$.

Proposition 8

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

En notant C_1 , ..., C_p les colonnes de A, on a :

$$\operatorname{Im} A = \operatorname{Vect}(C_1, ..., C_p)$$

Remarque:

- Les colonnes de A engendrent l'image.
- Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, soit $X \in \mathcal{M}_{p,1}(\mathbb{K})$:

$$AX = 0 \iff \begin{cases} \sum_{j=1}^{p} a_{1,j} x_j = 0 \\ \vdots \\ \sum_{j=1}^{p} a_{n,j} x_j = 0 \end{cases}$$

$$\iff \begin{cases} a_{1,1} x_1 + \dots + a_{1,p} x_p = 0 \\ \vdots \\ a_{n,1} x_1 + \dots + a_{n,p} x_p = 0 \end{cases}$$

Ainsi, les lignes de A donnent un système d'équations du noyau.

2.3 Rang d'une matrice

Définition 6

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$. On appelle rang de A le rang de la famille $(C_1,...,C_p)$ des colonnes de A. On note :

$$\operatorname{rg} A = \operatorname{rg}(C_1, ..., C_p) = \dim(\operatorname{Vect}(C_1, ..., C_p)) = \dim(\operatorname{Im} A).$$

Proposition 9

Soient E et F deux \mathbb{K} -espace vectoriels de dimensions finies.

Soient \mathcal{B} et \mathcal{C} des bases respectives de \mathcal{E} et \mathcal{F} .

Soit $u \in \mathcal{L}(E, F)$. Notons $A = \text{Mat}_{\mathcal{B}, \mathcal{C}}(u)$. On a:

$$\operatorname{rg} A = \operatorname{rg}(u)$$
.

Remarque: On a relié le rang d'une famille de vecteurs, le rang d'une application linéaire et le rang d'une matrice.

Corollaire 4

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, le rang d'une matrice A est égal au rang de l'application u canoniquement associée à A.

Proposition 10

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

 $\operatorname{rg}(A) \leq \min(n, p)$.

Proposition 11: Théorème du rang

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

 $p = \dim(\operatorname{Ker} A) + \operatorname{rg}(A)$.

2.4 Matrices inversibles

Proposition 12

Soit $A \in \mathcal{M}_n(\mathbb{K})$. On a les équivalences suivantes :

$$A \in GL_n(\mathbb{K}) \quad \Leftrightarrow \quad \operatorname{Ker}(A) = \{0\} \quad \Leftrightarrow \quad \operatorname{Im}(A) = \mathcal{M}_{n,1}(\mathbb{K}) \quad \Leftrightarrow \quad rg(A) = n.$$

Remarque : Soit $T \in \mathcal{T}_n^+(\mathbb{K})$, $\operatorname{rg}(T) = n$ ssi tous les coefficients diagonaux de T sont non nuls. On retrouve ainsi la condition d'inversibilité d'une matrice triangulaire.

Proposition 13

Soit $A \in \mathcal{M}_n(\mathbb{K})$.

- S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que $BA = I_n$ alors $A \in GL_n(\mathbb{K})$ et $A^{-1} = B$.
- S'il existe $B \in \mathcal{M}_n(\mathbb{K})$ tel que $AB = I_n$ alors $A \in GL_n(\mathbb{K})$ et $A^{-1} = B$.

2.5 Opérations élémentaires

Proposition 14

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$.

- Les opérations élémentaires sur les colonnes de A préservent Im A
- Les opérations élémentaires sur les lignes de A préservent Ker A

Proposition 15

Les opérations élémentaires préservent le rang.

Exemple 8: Soit $a \in \mathbb{R}$, soit $A = \begin{pmatrix} 1 & 2 & 0 & a \\ 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & a \\ 0 & 1 & a & 0 \end{pmatrix}$. Déterminer le rang de A.

Proposition 16: Rang de la transposée

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, alors $\operatorname{rg}(A) = \operatorname{rg}(A^T)$.

Remarque: Ce résultat est admis.

Corollaire 5

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$, notons $L_1,...,L_n$ les lignes de A.

$$rg(A) = rg(L_1, ..., L_n).$$

III Changements de bases

3.1 Matrice de passage

Définition 7

Soient E un \mathbb{K} -espace vectoriel de dimension finie n.

Soit \mathcal{B} et \mathcal{B}' deux bases de E.

On appelle matrice de passage de \mathcal{B} à \mathcal{B}' et on note $Pass(\mathcal{B},\mathcal{B}')$ la matrice :

$$Pass(\mathcal{B}, \mathcal{B}') = \operatorname{Mat}_{\mathcal{B}}(\mathcal{B}') \in \mathcal{M}_n(\mathbb{K}).$$

Proposition 17

Soit E un \mathbb{K} -espace vectoriel de dimension finie n. Soit \mathcal{B} , \mathcal{B}' , \mathcal{B}'' des bases de E.

- $Pass(\mathcal{B}, \mathcal{B}') = \operatorname{Mat}_{\mathcal{B}', \mathcal{B}}(Id_E)$.
- $Pass(\mathcal{B}, \mathcal{B}'') = Pass(\mathcal{B}, \mathcal{B}') Pass(\mathcal{B}', \mathcal{B}'')$.
- $Pass(\mathcal{B}, \mathcal{B}) = I_n$.
- $Pass(\mathcal{B}, \mathcal{B}') \in GL_n(\mathbb{K}) \text{ et } (Pass(\mathcal{B}, \mathcal{B}'))^{-1} = Pass(\mathcal{B}', \mathcal{B}).$

3.2 Formules de changement de base

Proposition 18: Effet d'un changement de base sur la matrice d'un vecteur

Soient E un \mathbb{K} -espace vectoriel de dimension finie.

Soient $\mathcal{B} = (e_1, \dots, e_p)$ et $\mathcal{B}' = (f_1, \dots, f_p)$ deux bases de E.

Soit $x \in E$ de coordonnées $(x_1, ..., x_p)$ dans \mathcal{B} et de coordonnées $(x_1', ..., x_p')$ dans \mathcal{B}' .

Soient
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_p \end{pmatrix} \in \mathcal{M}_{p,1}(\mathbb{K}) \text{ et } X' = \begin{pmatrix} x'_1 \\ \vdots \\ x'_p \end{pmatrix} \in \mathcal{M}_{p,1}(\mathbb{K}).$$

Alors:

$$X = Pass(\mathcal{B}, \mathcal{B}')X'$$
 et $X' = Pass(\mathcal{B}', \mathcal{B})X$.

- ∴ **Exemple 9:** Notons $\mathcal{B} = ((1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1))$ la base canonique de \mathbb{K}^4 .
 - 1. Montrer que la famille $\mathcal{B}' = ((1,0,0,0),(1,1,0,0),(1,1,1,0),(1,1,1,1))$ est une base de \mathbb{R}^4 .
 - 2. Posons x = (2, -1, 3, 4). Déterminer les coordonnées de x dans la base \mathcal{B}' .

Proposition 19 : Effet d'un changement de base sur la matrice d'une application linéaire

Soient E et F des \mathbb{K} -espaces vectoriels de dimensions finies.

Soient \mathcal{B} et \mathcal{B}' deux bases de E, \mathcal{C} et \mathcal{C}' deux bases de F.

Soit $u \in \mathcal{L}(E, F)$.

On a:

$$\operatorname{Mat}_{\mathcal{B}',\mathcal{C}'}(u) = \operatorname{Pass}(\mathcal{C}',\mathcal{C})\operatorname{Mat}_{\mathcal{B},\mathcal{C}}(u)\operatorname{Pass}(\mathcal{B},\mathcal{B}').$$

Corollaire 6 : Effet d'un changement de base sur la matrice d'un endomorphisme

Soit E un \mathbb{K} -espace vectoriel de dimension finie, soient \mathcal{B} et \mathcal{B}' deux bases de E. Soit $u \in \mathcal{L}(E)$. On a :

$$\operatorname{Mat}_{\mathcal{B}'}(u) = \operatorname{Pass}(\mathcal{B}', \mathcal{B})\operatorname{Mat}_{\mathcal{B}}(u)\operatorname{Pass}(\mathcal{B}, \mathcal{B}') = \operatorname{Pass}(\mathcal{B}, \mathcal{B}')^{-1}\operatorname{Mat}_{\mathcal{B}}(u)\operatorname{Pass}(\mathcal{B}, \mathcal{B}').$$

Exemple 10: On pose $v_1 = (1,0,0)$, $v_2 = (1,1,0)$, $v_3 = (1,2,3)$, $F = \text{Vect}(v_1, v_2)$, $G = \text{Vect}(v_3)$. On pose $\mathcal{B} = (v_1, v_2, v_3)$. \mathcal{B} est une base de \mathbb{R}^3 .

Soit s la symétrie par rapport à F parallèlement à G. Déterminer $\operatorname{Mat}_{\mathcal{B}}(s)$.

En déduire la matrice de s dans la base canonique de \mathbb{R}^3 .

 \Rightarrow **Exemple 11:** On note \mathcal{C} la base canonique de \mathbb{R}_3 et $\mathcal{B} = ((1,3,1),(1,0,-2),(0,1,-1))$.

On considère l'endomorphisme de \mathbb{R}^3 défini par :

$$u: \mathbb{R}^3 \to \mathbb{R}^3$$

 $(x, y, z) \mapsto (10x - y - z, -6x + 9y - 3z, -2x - y + 11z)$

- 1. Vérifier que \mathcal{B} est une base de \mathbb{R}^3 .
- 2. Déterminer $Mat_{\mathcal{C}}(u)$. On note $A = Mat_{\mathcal{C}}(u)$.
- 3. Déterminer $Mat_{\mathcal{B}}(u)$. On note $B = Mat_{\mathcal{B}}(u)$.
- 4. Calculer A^n pour $n \in \mathbb{N}$.

3.3 Matrices semblables

Définition 8

Soient $A, B \in \mathcal{M}_n(\mathbb{K})$. On dit que A et B sont semblables ssi il existe $P \in GL_n(\mathbb{K})$ tel que $B = P^{-1}AP$.

Remarque:

- Deux matrices semblables ont même rang.
- Si deux matrices sont semblables, leurs puissances le sont aussi.

Proposition 20

Soit $u \in \mathcal{L}(E)$, \mathcal{B} et \mathcal{B}' deux bases de E. Mat $\mathcal{B}(u)$ et Mat $\mathcal{B}'(u)$ sont semblables.

⇔ Exemple 12: Soit *A* la matrice :

$$A = \left(\begin{array}{ccc} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{array}\right).$$

Montrer que A est semblable à une matrice diagonale.

Exemple 13: Soit $A \in \mathcal{M}_n(\mathbb{R})$ telle que $A^2 = 0_n$. Montrer que A est semblable à :

IV Systèmes linéaires

Soit

$$(S) \begin{cases} a_{1,1}x_1 + \dots + a_{1,p}x_p = b_1 \\ a_{2,1}x_1 + \dots + a_{2,p}x_p = b_2 \\ \vdots \\ a_{n,1}x_1 + \dots + a_{n,p}x_p = b_n \end{cases}$$

Notons

$$A = \left(\begin{array}{ccc} a_{1,1} & \dots & a_{1,p} \\ \vdots & & \vdots \\ a_{n,1} & \dots & a_{n,p} \end{array}\right)$$

la matrice associée au système (S).

Proposition 21

Soient
$$x_1, ..., x_p \in \mathbb{K}$$
, notons $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$

Alors $(x_1,...,x_p)$ est solution du système homogène associé à (S) ssi $X \in \ker A$.

Définition 9

Soit (S_0) un système homogène, notons A la matrice associée. On appelle rang de (S_0) et on note rg (S_0) le rang de sa matrice :

$$\operatorname{rg}(S_0) = \operatorname{rg}(A)$$
.

Proposition 22

Soit (S_0) un système homogène.

Notons E_0 l'espace des solutions de (S_0) .

On a:

$$\dim E_0 = p - \operatorname{rg}(S_0)$$

Proposition 23

Soit $A \in \mathcal{M}_{n,p}(\mathbb{K})$ et $B \in \mathcal{M}_{n,1}(\mathbb{K})$.

Le système AX = B est compatible ssi $B \in \text{Im } A$.

Proposition 24

Soient $A \in GL_n(\mathbb{K})$, $B \in \mathcal{M}_{n,1}(\mathbb{K})$. Le système AX = B possède une unique solution. Dans ce cas, le système est dit de Cramer.