Indications: vacances de printemps

Problème 1 : Étude d'un endomorphisme défini par une intégrale

- 1. Stabilité par combinaisons linéaires.
- 2. Dériver $g: \mathbb{R} \to \mathbb{R}$, $x \mapsto \int_{x}^{x+T} f(t) dt$.
- 3. Utiliser, par exemple, $f: x \mapsto x$ pour montrer que la réciproque est fausse.
- 4 (a)
 - (b)
 - (c) Intégration par parties.
 - (d) Relation de Chasles dans le cas où 0 < x < 1.
- 5. (a) Utiliser F une primitive de f.
 - (b)
- 6. (a) Calculer $U(X^k)(x)$ en utilisant la formule du binôme de Newton.
 - (b) Utiliser la linéarité de *U* et la question précédente.
 - (c) Etudier l'image de la base canonique par U_n .
- 7. (a) (i) Prendre x = 1.
 - (ii) Remarquer que U(f)' = 0.
 - (b) Appliquer 2. à a = x 1 et T = 1.
 - (c) Utiliser la question précédente.
 - (d) Remarquer que $ker(U) \neq \{0\}$.
- 8. Remarquer que $\operatorname{Im}(U) \subset \mathcal{C}^1(\mathbb{R})$.

Problème 2 : Formule de quadrature

- 1. (a) Calculer $I_0(P)$ pour $P \in \mathbb{R}_0[X]$ et $I_0(X)$.
 - (b) Calculer $I_0(P)$ pour $P \in \mathbb{R}_1[X]$ et $I_0(X^2)$.
 - (c) Calculer $I_2(P)$ pour $P \in \mathbb{R}_2[X]$ puis se ramener à un système. Pour l'ordre de la formule, calculer $I_2(X^3)$ puis $I_2(P)$ pour $P \in \mathbb{R}_3[X]$ et enfin $I_2(X^4)$.
- 2. (a) Montrer que φ est injective avec un argument sur les polynômes et conclure avec les dimensions.
 - (b) Traduire les conditions demandées en utilisant φ .
 - (c) Utiliser l'image d'une base par un isomorphisme.
 - (d) Remarquer que la formule est exacte ssi elle est exacte pour les vecteurs d'une base.
 - (e) On connaît les racines et le coefficient dominant des polynômes recherchés.
- 3. (a) Appliquer le résultat à Q = P((d x)X + c).
 - (b) i. Exprimer Φ en fonction de f et de F, une primitive de f. Attention à ne pas oublier de termes composés dans les calculs de dérivées.
 - ii. Combiner le théorème des bornes atteintes et l'inégalité des accroissements finis.
 - iii. Intégrer l'inégalité précédente.
 - iv. Intégrer encore deux fois.
 - (c) Appliquer la question précédente à $c_i = a + i \frac{b-a}{n}$ et $d_i = a + (i+1) \frac{b-a}{n}$ puis sommer les inégalités.

Problème 3: Endomorphismes vérifiant une équation fonctionnelle

- 1. (a)
 - (b) Commencer par chercher une famille génératrice.
 - (c) Calculer $\varphi \circ \varphi(x, y, z, t)$.
 - (d) Calculer $f \circ f$.
- - ii. Utiliser la relation précédente.
 - i. Déduire de la question précédente une inégalité sur les dimensions et utiliser le théorème du rang. (b)
 - ii. Etudier $\ker g \cap \ker h$.
 - iii. Montrer que : dim (ker $g \oplus \ker h$) $\geq \dim E$.
 - i. Montrer l'égalité des applications linéaires sur des espaces supplémentaires. ii. Remarquer que : Im $q=\ker h=\ker p$.

 - iii. Utiliser la formule du binôme de Newton en remarquant que : f = 2p q.