

Polynômes de Tchebychev

Exercice de calcul (Chapitre 8, exemple 18)

Soit $x \in \mathbb{R}$, on a: $4x^2 - 4x + 1 = (2x - 1)^2$. Soit $x \in \mathbb{R} \setminus \{\frac{1}{2}\},\$

$$\frac{x+1}{4x^2-4x+1} = \frac{1}{8} \frac{8x-4}{4x^2-4x+1} + \frac{3}{2} \frac{1}{4x^2-4x+1} = \frac{1}{8} \frac{8x-4}{4x^2-4x+1} + \frac{3}{4} \frac{2}{(2x-1)^2}$$

Ainsi une primitive de $x \mapsto \frac{x+1}{4x^2-4x+1}$ est $x \mapsto \frac{1}{8} \ln(4x^2-4x+1) - \frac{3}{4} \frac{1}{2x-1}$ et les primitives de $x \mapsto \frac{x+1}{4x^2-4x+1}$ sont :

Inégalité

Soit $n \in \mathbb{N}$. f_n est dérivable sur [0,1] et : $\forall x \in [0,1]$, $f'_n(x) = \frac{n(1+n^2x^4)-nx.4n^2x^3}{(1+n^2x^4)^2} = \frac{n-3n^3x^4}{(1+n^2x^4)^2} = \frac{n(1-3n^2x^4)}{(1+n^2x^4)^2}$. Donc f_n est croissante sur $\left[0, \sqrt[4]{\frac{1}{3n^2}}\right]$ et décroissante sur $\left[\sqrt[4]{\frac{1}{3n^2}}, +\infty\right[$.

Ainsi, soit $x \in [0, 1]$,

$$|f_n(x)| \le f_n \left(\sqrt[4]{\frac{1}{3n^2}}\right).$$

Or:
$$f_n\left(\sqrt[4]{\frac{1}{3n^2}}\right) = \frac{n\sqrt[4]{\frac{1}{3n^2}}}{1 + \frac{n^2}{3n^2}} = \frac{3}{4\sqrt[4]{3}}\sqrt{n}$$
. Donc $c = \frac{3}{4\sqrt[4]{3}}$ convient.

Exercice 14 (Chapitre 15, exercice 12)

Pour tout $P \in \mathbb{K}[X] \setminus \{0\}$, on note dom (P) son coefficient dominant.

- 1. Pour tout $n \in \mathbb{N}^*$, on considère la propriété $\mathcal{P}(n)$: « $\deg(T_n) = n$ et $\dim(T_n) = 2^{n-1}$.» Montrons par récurrence d'ordre 2 que pour tout $n \in \mathbb{N}^*$, $\mathcal{P}(n)$ est vraie.
 - Pour n = 1, $T_1 = X$ donc $deg(T_1) = 1$ et $dom(T_1) = 1 = 2^0$. Pour n = 2, $T_2 = 2X^2 - 1$ donc $\deg(T_2) = 2$ et $\dim(T_2) = 2 = 2^{2-1}$. Ainsi $\mathcal{P}(1)$ et $\mathcal{P}(2)$ sont vraies.

• Soit $n \in \mathbb{N}^*$, supposons que $\mathcal{P}(n)$ et $\mathcal{P}(n+1)$ sont vraies.

On a $T_{n+2} = 2XT_{n+1} - T_n$ donc $\deg(T_{n+2}) = \deg(2XT_{n+1} - T_n)$.

Or, $\deg(T_n) = n$, $\deg(2XT_{n+1}) = \deg(2X) + \deg(T_{n+1}) = \deg(X) + \deg(T_{n+1}) = n+2$

 $\operatorname{donc} \operatorname{deg}(T_n) < \operatorname{deg}(2XT_{n+1})).$

Ainsi, $\deg(T_{n+2}) = \max(\deg(2XT_{n+1}), \deg(T_n)) = \deg(2XT_{n+1}) = n+2.$

De plus, comme $\deg(T_n) < \deg(2XT_{n+1})$), le coefficient dominant de T_{n+2} est celui du polynôme $2XT_{n+1}$.

D'où dom (T_{n+2}) = dom $(2XT_{n+1})$ = 2dom (T_{n+1}) = 2 × 2ⁿ = 2ⁿ⁺¹.

Ainsi, $\mathcal{P}(n+2)$ est vraie.

• Ainsi, pour tout $n \in \mathbb{N}^*$, $\deg(T_n) = n$ et $\operatorname{dom}(T_n) = 2^{n-1}$.

De plus, on a : $deg(T_0) = 0$ et $dom(T_0) = 1$.

2. Soit $\theta \in \mathbb{R}$. Pour tout $n \in \mathbb{N}$, on considère la propriété $\mathcal{Q}(n)$: « $T_n(\cos(\theta)) = \cos(n\theta)$. »

Montrons par récurrence d'ordre 2 que pour tout $n \in \mathbb{N}$, Q(n) est vraie.

• Pour n = 0, $T_0(\cos(\theta)) = 1 = \cos(0\theta)$.

Pour n = 1, $T_1(\cos(\theta)) = \cos(\theta)$.

Ainsi, Q(0) et Q(1) sont vraies.

• Soit $n \in \mathbb{N}$, supposons que $\mathcal{Q}(n)$ et $\mathcal{Q}(n+1)$ sont vraies.

$$\begin{split} T_{n+2}(\cos(\theta)) &= 2\cos(\theta) \, T_{n+1}(\cos(\theta)) - T_n(\cos(\theta)) \\ &= 2\cos(\theta) \cos((n+1)\theta) - \cos(n\theta) \\ &= 2\cos(\theta) \left(\cos(n\theta)\cos(\theta) - \sin(n\theta)\sin(\theta)\right) - \cos(n\theta) \\ &= \cos(n\theta) \left(2\cos(\theta)^2 - 1\right) - \sin(n\theta) \left(2\cos(\theta)\sin(\theta)\right) \\ &= \cos(n\theta)\cos(2\theta) - \sin(n\theta)\sin(2\theta) \\ &= \cos((n+2)\theta) \end{split}$$

Ainsi, Q(n+2) est vraie.

• On a donc prouvé par récurrence que pour tout $n \in \mathbb{N}$, $\mathcal{Q}(n)$ est vraie.

Montrons désormais l'unicité.

Soit $P \in \mathbb{C}[X]$ tel que : $\forall \theta \in \mathbb{R}$, $P(\cos(\theta)) = \cos(n\theta)$.

On a alors : $\forall \theta \in \mathbb{R}$, $P(\cos(\theta)) = T_n(\cos(\theta))$.

Donc: $\forall \theta \in \mathbb{R}$, $(P - T_n)(\cos(\theta) = 0$. Or, $\cos : \mathbb{R} \to [-1, 1]$ est surjective.

Ainsi : $\forall x \in [-1, 1], (P - T_n)(x) = 0.$

Donc $P - T_n$ admet une infinité de racines (distinctes). C'est donc le polynôme nul.

On a donc $P = T_n$. Ainsi, T_n est bien l'unique polynôme vérifiant l'égalité souhaitée.

3. T_0 n'admet aucune racine.

Soit $n \in \mathbb{N}^*$. Déterminons les racines de T_n .

Soit $\theta \in \mathbb{R}$. On a :

$$T_{n}(\cos(\theta)) = 0 \iff \cos(n\theta) = 0$$

$$\iff n\theta = \frac{\pi}{2}[\pi]$$

$$\iff \exists k \in \mathbb{Z}, \ n\theta = \frac{\pi}{n} + k\pi$$

$$\iff \exists k \in \mathbb{Z}, \ \theta = \frac{\frac{\pi}{2} + k\pi}{n}$$

$$\iff \exists k \in \mathbb{Z}, \ \theta = \frac{(2k+1)\pi}{2n}$$

Ainsi, les $\left(\cos\left(\frac{(2k+1)\pi}{2n}\right)\right)$ avec $k\in[0,n-1]$ sont des racines de T_n .

Soit
$$k \in [0, n-1]$$
, on a $1 \le 2k+1 \le 2n-1$. D'où : $0 \le \frac{\pi}{2n} \le \frac{(2k+1)\pi}{2n} \le \pi - \frac{\pi}{2n} < \pi$.

De plus, la fonction $\cos: [0, \pi] \to [-1, 1]$ est injective. Ainsi, pour tout $k \in [0, n-1]$, les $\left(\cos\left(\frac{(2k+1)\pi}{2n}\right)\right)$ sont deux à deux distincts. On a ainsi obtenu n racines distinctes pour T_n de degré n. On a donc déterminé toutes les racines de T_n .

Problème 4 (DM9. d'après Centrale PC 2022)

1. Polynômes de Lagrange

(a) Soient $i, k \in [1, n]$,

• Si k = i, $L_i(a_k) = \prod_{\substack{j \in [\![1,n]\!] \setminus \{i\}}} \frac{a_i - a_j}{a_i - a_j} = 1$. • Si $k \neq i$, il existe $j \in [\![1,n]\!] \setminus \{i\}$ tel que $a_k - a_j = 0$ donc $L_i(a_k) = 0$.

$$L_i(a_k) = \begin{cases} 1 & \text{si } k = i \\ 0 & \text{sinon} \end{cases}$$

- (b) Soit $P \in \mathbb{R}_{n-1}[X]$, posons $Q = P \sum_{i=1}^{n} P(a_i) L_i$. On a deg $(P) \le n-1$ et : $\forall i \in [1, n]$, deg $(L_i) = n-1$.
 - Donc $deg(Q) \le n 1$.
 - Soit $k \in [1, n]$,

$$Q(a_k) = P(a_k) - \sum_{i=1}^{n} P(a_i) L_i(a_k)$$
$$= P(a_k) - P(a_k)$$
$$= 0$$

Ainsi, Q admet au moins n racines distinctes. • Donc Q = 0, d'où : $P = \sum_{i=1}^{n} P(a_i) L_i$. (c) Soit $P \in \mathbb{R}[X]$ tel que $\deg(P) \le n - 2$. On a $P \in \mathbb{R}_{n-1}[X]$, donc : $P = \sum_{i=1}^{n} P(a_i) L_i$ (*).

Le coefficient en X^{n-1} dans L_i est $\frac{1}{\prod\limits_{\substack{j=1\\j\neq i}}^{n}(a_i-a_j)}$ et le coefficient en X^{n-1} dans P est 0 donc en égalisant les coefficients

en X^{n-1} dans (*), on obtient :

$$0 = \sum_{i=1}^{n} \frac{P(a_i)}{\prod\limits_{\substack{j=1\\j\neq i}}^{n} (a_i - a_j)}.$$

2. Polynômes de Tchebychev

(a)
$$(1+1)^n = \sum_{k=0}^n \binom{n}{k}$$
 et $(1-1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k$.

$$2^{n} = \sum_{k=0}^{n} \left(1 + (-1)^{k} \right) \binom{n}{k}.$$

Or,
$$1 + (-1)^k = \begin{cases} 2 & \text{si } k \text{ est pair} \\ 0 & \text{si } k \text{ est impair} \end{cases}$$

Donc:

$$2^n = \sum_{\substack{k \in [0, n] \\ k \text{ pair}}} 2 \binom{n}{k}.$$

D'où, en posant k = 2p:

$$2^n = 2 \sum_{p=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2p}.$$

Donc:

$$2^{n-1} = \sum_{p=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2p}.$$

(b) Soit $p \in \left[0, \left\lfloor \frac{n}{2} \right\rfloor\right]$, $X^{n-2p}(1-X^2)^p$ est un polynôme de degré n-2p+2p=n de coefficient dominant $(-1)^p$.

Donc par combinaison linéaire,
$$deg(T_n) \le n$$
 et le coefficient en X^n dans T_n est

$$\sum_{p=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^p \binom{n}{2p} (-1)^p = \sum_{p=0}^{\lfloor \frac{n}{2} \rfloor} \binom{n}{2p} = 2^{n-1} \neq 0.$$

Ainsi, $deg(T_n) = n$ et le coefficient dominant de T_n est 2^{n-1} .

(c) • Soit $\theta \in \mathbb{R}$,

$$\begin{aligned} \cos(n\theta) &= \operatorname{Re}\left(e^{in\theta}\right) &= \operatorname{Re}\left((e^{i\theta})^n\right) \\ &= \operatorname{Re}\left((\cos\theta + i\sin\theta)^n\right) \\ &= \operatorname{Re}\left(\sum_{k=0}^n \binom{n}{k} (i\sin\theta)^k (\cos\theta)^{n-k}\right) \end{aligned}$$

Or: $i^k \in \mathbb{R}$ si k est pair et $i^k \in i\mathbb{R}$ si k est impair. Donc:

$$\cos(n\theta) = \sum_{\substack{k \in [0,n] \\ k \text{ pair}}} i^k \binom{n}{k} \cos^{n-k}(\theta) \sin^k \theta$$

$$= \sum_{p=0}^{\lfloor \frac{n}{2} \rfloor} i^{2p} \binom{n}{2p} \cos^{n-2p}(\theta) \sin^{2p} \theta$$

$$= \sum_{p=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^p \binom{n}{2p} \cos^{n-2p}(\theta) \sin^{2p}(\theta)$$

$$= \sum_{p=0}^{\lfloor \frac{n}{2} \rfloor} (-1)^p \binom{n}{2p} \cos^{n-2p}(\theta) \left(1 - \cos^2 \theta\right)^p$$

$$= T_n(\cos(\theta))$$

 T_n vérifie bien la relation.

• Unicité:

Soit $Q_n \in \mathbb{R}[X]$ tel que : $\forall \theta \in \mathbb{R}$, $Q_n(\cos \theta) = \cos(n\theta)$.

Alors: $\forall \theta \in \mathbb{R}$, $(T_n - Q_n)(\cos(\theta)) = 0$.

Or: $\cos : \mathbb{R} \to [-1, 1]$ est surjectif. Ainsi: $\forall x \in [-1, 1], (T_n - Q_n)(x) = 0.$

Donc $T_n - Q_n$ admet une infinité de racines distinctes. Donc $T_n - Q_n = 0$.

Ainsi $T_n = Q_n$

• Ainsi T_n est l'unique polynôme tel que : $\forall \theta \in \mathbb{R}, T_n(\cos \theta) = \cos(n\theta)$.

(d) Soit $k \in [1, n]$,

$$T_n(x_k) = T_n \left(\cos \left(\frac{(2k-1)\pi}{2n} \right) \right)$$

$$= \cos \left(\frac{(2k-1)\pi}{2} \right)$$

$$= \cos \left(k\pi - \frac{\pi}{2} \right)$$

$$= 0$$

Ainsi, x_k est racine de T_n . De plus, $\frac{(2k-1)\pi}{2n} \in [0,\pi]$ et $\cos:[0,\pi] \to \mathbb{R}$ est injectif. Donc les x_k sont deux à deux distincts.

Ainsi, $x_1,...,x_n$ sont n racines de T_n qui est de degré n. Donc T_n est scindé et son coefficient dominant est 2^{n-1} .

Donc
$$T_n = 2^{n-1} \prod_{k=1}^n (X - x_k)$$
.

3. Une première inégalité

(a) • en utilisant la question 2.c, $\sup_{x \in [-1,1]} |T_n(x)| = \sup_{\theta \in \mathbb{R}} |T_n(\cos \theta)| = \sup_{\theta \in \mathbb{R}} |\cos(n\theta)| \operatorname{car} \left\{\cos \theta, \theta \in \mathbb{R}\right\} = [-1,1].$ Ainsi : $\sup_{x \in [-1,1]} |T_n(x)| = 1.$

• Posons
$$W = \frac{1}{2^{n-1}} T_n$$
 alors $\deg(W) = \deg(T_n) = n$ et W est unitaire.

De plus,
$$\sup_{x \in [-1,1]} |W(x)| = \frac{1}{2^{n-1}} \sup_{x \in [-1,1]} |T_n(x)| = \frac{1}{2^{n-1}}.$$
Donc $W = \frac{1}{2^{n-1}} T_n$ vérifie l'égalité.

• $\deg(T_n) = n$ et $\deg W = n$, $\operatorname{donc deg}(Q) \le n$.

• Le coefficient en X^n dans Q est $\frac{1}{2^{n-1}} 2^{n-1} - 1 = 0$

Donc
$$W = \frac{1}{2n-1} T_n$$
 vérifie l'égalité.

(b)
$$\operatorname{deg}(T_n) = n \operatorname{deg}(W) = n, \operatorname{donc} \operatorname{deg}(Q) \le n$$

• Le coefficient en
$$X^n$$
 dans Q est $\frac{1}{2^{n-1}}2^{n-1}-1=0$

$$\operatorname{Donc\,deg}(Q) \leq n-1$$

(c) i. Soit
$$k \in [0, n]$$
,

$$\begin{split} Q(z_k) &= \frac{1}{2^{n-1}} T_n(z_k) - W(z_k) \\ &= \frac{1}{2^{n-1}} T_n \bigg(\cos \bigg(\frac{k\pi}{n} \bigg) \bigg) - W(z_k) \\ &= \frac{1}{2^{n-1}} \cos(k\pi) - W(z_k) \quad \text{avec la question } 2.c \\ &= \frac{1}{2^{n-1}} (-1)^k - W(z_k) \end{split}$$

Or:
$$-\frac{1}{2^{n-1}} < W(z_k) < \frac{1}{2^{n-1}}$$
.

• si
$$k$$
 est pair $Q(z_k) = \frac{1}{2^{n-1}} - W(z_k) > 0$.

• si k est impair
$$Q(z_k) = -\frac{1}{2^{n-1}} - W(z_k) < 0$$
.

iii. On a
$$z_n < c_{n-1} < z_{n-1} < ... < z_1 < c_0 < z_0$$
 donc $c_0, ..., c_{n-1}$ sont n racines distinctes de Q .

Or,
$$deg(Q) \le n - 1$$
, $donc Q = 0$.

Ainsi:
$$W = \frac{1}{2^{n-1}} T_n$$
 ce qui est absurde car $\sup_{x \in [-1,1]} |W(x)| < \frac{1}{2^{n-1}} = \sup_{x \in [-1,1]} \left| \frac{T_n(x)}{2^{n-1}} \right|$.

Ainsi :
$$\sup_{x \in [-1,1]} |W(x)| \ge \frac{1}{2^{n-1}}$$
 et (1) est prouvée.

(d) i • Soit
$$k \in [0, n]$$
, de même qu'à la question 1 c i $O(z_k) > 0$ si k est pair et $O(z_k) < 0$ si k est impair

Ainsi :
$$\sup_{x \in [-1,1]} |W(x)| \ge \frac{1}{2^{n-1}}$$
 et (1) est prouvée.
i. • Soit $k \in [0,n]$, de même qu'à la question 1.c.i $Q(z_k) \ge 0$ si k est pair et $Q(z_k) \le 0$ si k est impair.
• Soit $j \in [0,n]$, $(z_k)_{k \in [0,n]}$ est décroissante par décroissance de cos sur $[0,\pi]$. Donc $z_k - z_j > 0$ si $k < j$ et $z_k - z_j < 0$ si $k > j$.

$$\begin{aligned} z_k - z_j &< 0 \text{ si } k > j. \\ \text{Donc } \prod_{\substack{j=0\\ j \neq i}}^n (z_k - z_j) \text{ est le produit de } k \text{ termes négatifs } (j \in \llbracket 0, k-1 \rrbracket) \text{ et de } n-k \text{ termes positifs } (j \in \llbracket k+1, n \rrbracket) \text{ .} \end{aligned}$$

Ainsi, ce produit a même signe que $(-1)^k \times 1^{n-k} = (-1)^k$.

Ainsi, ce produit a meme signe que
$$(-1)^n \times 1^{n-n} = (-1)^n$$
.

Donc ce produit est positif est k est pair et négatif si k est impair.

• Par produit $\frac{Q(z_k)}{n} \ge 0$.

$$\prod_{\substack{j=0 \ j \ne k}} (z_k - z_j)$$

ii. En appliquant 1.c à $n+1$, aux points $z_0, ..., z_n$ et au polynôme Q qui vérifie $\deg(Q) \le (n+1) - 2 = n-1$, on a :
$$\sum_{k=0}^n \frac{Q(z_k)}{\prod_{j=0}^n (z_k - z_j)} = 0.$$

ii. En appliquant 1.c à
$$n+1$$
, aux points $z_0, ..., z_n$ et au polynôme Q qui vérifie $\deg(Q) \leq (n+1) - 2 = n-1$, on a

$$\sum_{k=0}^{n} \frac{Q(z_k)}{\prod_{\substack{j=0\\j\neq k}}^{n} (z_k - z_j)} = 0.$$

Or, il s'agit d'une somme de nombres positifs, donc :

$$\forall k [0, n], \frac{Q(z_k)}{\prod\limits_{\substack{j=0\\j\neq k}}^{n}(z_k - z_j)} = 0.$$

Donc: $\forall k \in [0, n], Q(z_k) = 0.$

Ainsi Q admet au moins n+1 racines distinctes $(z_0,...,z_n)$ et $\deg(Q) \le n-1$.

Donc
$$Q = 0$$
 et $W = \frac{1}{2^{n-1}} T_n$.

On a donc égalité dans (1) ssi $W = \frac{T_n}{2^{n-1}}$.