Correction de la séance 1

Difficiles en algèbre linéaire

Exercice de calcul (Chapitre 18, exemple 8)

1. Soit $n \in \mathbb{N}^*$,

$$\frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + e^{-k/n}} = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right),$$

où $f: x \mapsto \frac{1}{1+e^{-x}}$ est continue sur [0,1]. Donc, par sommes de Riemann

$$\lim_{n \to +\infty} \frac{1}{n} \sum_{k=1}^{n} \frac{1}{1 + e^{-k/n}} = \int_{0}^{1} f(x) \, dx = \int_{0}^{1} \frac{e^{x}}{e^{x} + 1} \, dx$$
$$= \left[\ln(e^{x} + 1) \right]_{0}^{1} = \ln(e + 1) - \ln(2) = \ln \frac{e + 1}{2}.$$

2. Soit $n \in \mathbb{N}^*$,

$$\sum_{k=1}^{n} \frac{k^2}{n^3 + k^2 n} = \frac{1}{n} \sum_{k=1}^{n} \frac{\left(\frac{k}{n}\right)^2}{1 + \left(\frac{k}{n}\right)^2} = \frac{1}{n} \sum_{k=1}^{n} f\left(\frac{k}{n}\right),$$

où $f: x \mapsto \frac{x^2}{1+x^2}$ est continue sur [0,1]. Donc, par sommes de Riemann :

$$\lim_{n \to +\infty} \sum_{k=1}^{n} \frac{k^2}{n^3 + k^2 n} = \int_0^1 f(x) \, dx = \int_0^1 (1 - \frac{1}{1 + x^2}) \, dx$$
$$= \left[x - \operatorname{Arctan}(x) \right]_0^1 = 1 - \operatorname{Arctan}(1) = 1 - \frac{\pi}{4}.$$

3. Soit $n \in \mathbb{N}^*$,

$$\begin{split} \ln\left(\frac{1}{n^2} \prod_{k=1}^n (k^2 + n^2)^{1/n}\right) &= \ln\left(\prod_{k=1}^n (\frac{k^2 + n^2}{n^2})^{1/n}\right) = \frac{1}{n} \sum_{k=1}^n \ln\left(\frac{k^2 + n^2}{n^2}\right) \\ &= \frac{1}{n} \sum_{k=1}^n \ln\left(\left(\frac{k}{n}\right)^2 + 1\right) = \frac{1}{n} \sum_{k=1}^n f\left(\frac{k}{n}\right), \end{split}$$

où $f: x \mapsto \ln(x^2 + 1)$ est continue sur [0, 1]. Donc, par sommes de Riemann :

$$\lim_{n \to +\infty} \ln \left(\frac{1}{n^2} \prod_{k=1}^n (k^2 + n^2)^{1/n} \right) = \int_0^1 f(x) \, dx = \int_0^1 \ln(x^2 + 1) \, dx.$$

Donc, par intégration par parties :

$$\lim_{n \to +\infty} \ln \left(\frac{1}{n^2} \prod_{k=1}^n (k^2 + n^2)^{1/n} \right) = \left[x \ln(1 + x^2) \right]_0^1 - \int_0^1 \frac{2x^2}{1 + x^2} \, dx = \ln(2) - 2 \int_0^1 (1 - \frac{1}{1 + x^2}) \, dx$$

$$= \ln(2) - 2 \left[x - \operatorname{Arctan}(x) \right]_0^1 = \ln(2) - 2(1 - \frac{\pi}{4}).$$

$$\lim_{n \to +\infty} \frac{1}{n^2} \prod_{k=1}^n (k^2 + n^2)^{1/n} = \exp(\ln(2) - 2(1 - \frac{\pi}{4})) = \frac{2}{e^{2 - \frac{\pi}{2}}}.$$

Inégalité

Soient $n \in \mathbb{N}^*$ et $x \in \mathbb{R}$.

$$|f_n(x) - |x||^2 = \left| \sqrt{x^2 + \frac{1}{n}} - |x| \right|^2 = x^2 + \frac{1}{n} - 2|x| \sqrt{x^2 + \frac{1}{n}} + x^2$$

$$\leq 2x^2 + \frac{1}{n} - 2|x| \sqrt{x^2} \leq \frac{1}{n}.$$

Donc:

$$\left| f_n(x) - |x| \right| \le \frac{1}{\sqrt{n}}.$$

Posons: $\forall n \in \mathbb{N}^*$, $u_n = \frac{1}{\sqrt{n}}$. On a: $\forall n \in \mathbb{N}^*$, $\forall x \in \mathbb{R}$, $|f_n(x) - |x|| \le u_n$ et $\lim u_n = 0$ donc (u_n) convient.

Exercice 30 (Chapitre 19, exemple 9)

- On pose $G = \ker f$. Soit F un supplémentaire de G dans E, soit P la projection sur F parallèlement G.
- Soit $(e_1,...,e_k)$ une base de F, soit $(e_{k+1},...,e_n)$ une base de G. Comme F et G sont supplémentaires dans E, alors $(e_1,...,e_n)$ est une base de E.
- Posons : $\forall j \in [1, k], f_j = f(e_j)$.

Montrons que la famille $(f_1, ..., f_k)$ est libre.

Soient
$$\lambda_1, ..., \lambda_k \in \mathbb{K}$$
 tels que $\sum_{j=1}^k \lambda_j f_j = 0$.

Alors:
$$\sum_{j=1}^{k} \lambda_j f(e_j) = 0$$
 donc $f\left(\sum_{j=1}^{k} \lambda_j e_j\right) = 0$.

Ainsi
$$\sum_{j=1}^{k} \lambda_j e_j \in \ker f = G$$
.

Or $(e_1,...,e_k)$ une base de F donc $\sum_{i=1}^k \lambda_j e_j \in F$.

Ainsi :
$$\sum_{j=1}^k \lambda_j e_j \in F \cap G = \{0\} \text{ donc } \sum_{j=1}^k \lambda_j e_j = 0.$$

Or la famille (e_1, \ldots, e_k) est libre, donc

$$\forall j \in [1, k], \lambda_j = 0.$$

Donc la famille $(f_1, ..., f_k)$ est libre.

- D'après le théorème de la base incomplète, il existe $f_{k+1},\ldots,f_n\in E$ tels que (f_1,\ldots,f_n) soit une base de E.

$$\forall j \in [1, k], g(e_i) = f_i$$
.

Comme l'image de la base $(e_1, ..., e_n)$ par g est une base, alors g est un isomorphisme. Ainsi : $g \in GL(E)$.

• Montrons que $f = g \circ p$.

– Soit j ∈ $\llbracket 1, k \rrbracket$, on a:

$$g\circ p(e_i)=g(e_i)=f_i=f(e_i)$$

car $e_i \in F$ et p projection sur F.

- Soit j ∈ [k+1, n], on a:

$$g\circ p(e_i)=g(0)=0=f(e_i)$$

car $e_i \in G$ et p projection parallèlement à G et $G = \ker f$.

- Comme $(e_1, ..., e_n)$ est une base de E et $g \circ p$, $f \in \mathcal{L}(E)$, alors :

$$f = g \circ p$$
.

• Donc *g* et *p* conviennent.

Exercice 31 (Chapitre 19, exercice 23)

• Supposons qu'il existe $u \in \mathcal{L}(E)$ tel que Im u = F et ker u = G. Alors, d'après le théorème du rang :

 $n = \dim \ker u + \dim \operatorname{Im} u = \dim F + \dim G$.

• Supposons $\dim F + \dim G = n$.

Posons $p = \dim G$, alors $\dim F = n - p$.

Soit $(e_1, ..., e_p)$ une base de G et $(f_1, ..., f_{n-p})$ une base de F.

Comme $(e_1, ..., e_p)$ est libre, d'après le théorème de la base incomplète, il existe $e_{p+1}, ..., e_n$ tels que $(e_1, ..., e_n)$ soit une base de E.

Soit u l'unique application de $\mathcal{L}(E)$ telle que :

$$\forall k \in [1, p], \ u(e_k) = 0$$

$$\forall k \in [\![p+1,n]\!], \ u(e_k) = f_{k-p}.$$

Comme (e_1,\ldots,e_n) est une famille génératrice de E, alors $(u(e_1),\ldots,u(e_n))$ est une famille génératrice de $\operatorname{Im} u$. Donc :

$$\operatorname{Im} u = \operatorname{Vect}(u(e_1), \dots, u(e_n)) = \operatorname{Vect}(0, \dots, 0, f_1, \dots, f_{n-p}) = \operatorname{Vect}(f_1, \dots, f_{n-p}) = F.$$

De plus:

$$\forall k \in [1, p], e_k \in ker u.$$

Donc, comme $\ker u$ est un espace vectoriel:

$$Vect(e_1, ..., e_p) \subset \ker u$$
.

D'après le théorème du rang : $\dim(E) = \operatorname{rg} u + \dim(\operatorname{Ker} u)$. Donc $\dim(\operatorname{Ker} u) = n - \operatorname{rg} u$.

Or Im $u = \text{Vect}(f_1, \dots, f_{n-p})$, et comme (f_1, \dots, f_{n-p}) est libre, (f_1, \dots, f_{n-p}) est une base de Im u. Ainsi $\operatorname{rg} u = \dim \operatorname{Im} u = n-p$. Donc $\dim (\operatorname{Ker} u) = n - (n-p) = p$.

Or $\text{Vect}(e_1, \dots, e_p) \subset \text{ker } u \text{ et } \dim(\text{Ker } u) = p = \dim \text{Vect}(e_1, \dots, e_p).$

Donc:

$$\text{Ker } u = \text{Vect}(e_1, ..., e_p) = G.$$

Ainsi *u* convient.

• Ainsi : il existe $u \in \mathcal{L}(E)$ tel que Im u = F et ker u = G ssi dim $F + \dim G = n$.

Exercice 32 (Chapitre 20, exercice 20)

• Supposons qu'il existe $P \in GL_p(\mathbb{K})$, $Q \in GL_p(\mathbb{K})$ tels que $A = QJ_PP$. Alors comme P et Q sont inversibles :

$$\operatorname{rg}(A) = \operatorname{rg}(J_r P) = \operatorname{rg}(J_r) = r.$$

En effet, si on note $C_1, ..., C_p$ les colonnes de J_r , on a :

$$\operatorname{rg}(J_r) = \dim \operatorname{Vect}(C_1, \dots, C_p) = \dim \operatorname{Vect}(C_1, \dots, C_r) = r,$$

car $(C_1,...,C_r)$ car il s'agit des r premiers vecteurs de la base canonique de $\mathcal{M}_{n,1}(\mathbb{K})$.

• Supposons que $\operatorname{rg}(A) = r$.

Soit $f \in \mathcal{L}(\mathbb{K}^p, \mathbb{K}^n)$ l'application linéaire canoniquement associée à A.Notons \mathcal{C}_1 (resp. \mathcal{C}_2) la base canonique de \mathbb{K}^p (resp. \mathbb{K}^n).

D'après le théorème du rang, dim $\ker f = p - r$, donc soit (e_{r+1}, \dots, e_p) une base de $\ker f$.

Comme $(e_{r+1},...,e_p)$ est libre, d'après le théorème de la base incomplète, il existe $e_1,...,e_r \in \mathbb{K}^p$ tels que $\mathcal{B}_1 = (e_1,...,e_p)$ soit une base de \mathbb{K}^p .

Comme \mathcal{B}_1 est génératrice de \mathbb{K}^p , alors $(f(e_1), \dots, f(e_p))$ est génératrice de $\mathrm{Im}\, f$. Or : $\forall k > r, f(e_k) = 0$ donc $(f(e_1), \dots, f(e_r))$ est génératrice de $\mathrm{Im}\, f$.

Or: Card $(f(e_1), ..., f(e_r)) = r = rg(f) = \dim(\operatorname{Im} f)$, donc $(f(e_1), ..., f(e_r))$ est une base de $\operatorname{Im} f$.

Comme $(f(e_1),...,f(e_r))$ est libre, d'après le théorème de la base incomplète, il existe $g_{r+1},...,g_n \in \mathbb{K}^n$ tels que $\mathcal{B}_2 = (f(e_1),...,f(e_r),g_{r+1},...,g_n)$ soit une base de \mathbb{K}^n .

On a:

$$\operatorname{Mat}_{\mathcal{B}_{1},\mathcal{B}_{2}}(f) = \begin{pmatrix} 1 & 0 & \dots & \dots & 0 \\ 0 & \ddots & \ddots & & \vdots \\ \vdots & & 1 & 0 & & 0 \\ 0 & & & 0 & & \vdots \\ \vdots & & & & \ddots & \vdots \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix} = J_{r}.$$

Posons $P = Pass(\mathcal{B}_1, \mathcal{C}_1)$ et $Q = Pass(\mathcal{C}_2, \mathcal{B}_2)$, alors : $P \in GL_p(\mathbb{K})$, $Q \in GL_n(\mathbb{K})$ et d'après les formules de changement de base :

$$A = \operatorname{Mat}_{\mathcal{C}_1, \mathcal{C}_2}(f) = \operatorname{Pass}(\mathcal{C}_2, \mathcal{B}_2) \operatorname{Mat}_{\mathcal{B}_1, \mathcal{B}_2}(f) \operatorname{Pass}(\mathcal{B}_1, \mathcal{C}_1) = QJ_r P.$$

Exercice 33 (Chapitre 20, exemple 13)

Soit f l'endomorphisme canoniquement associé à A. Posons r = rg(f) = rg(A).

On a: $A^2 = 0_n$ donc: $\forall x \in \mathbb{R}^n$, f(f(x)) = 0 donc Im $f \subset \ker f$.

Soit $(e_1, e_3, \dots, e_{2r-1})$ une base de Im f.

Soit $k \in [1, r]$, comme $e_{2k-1} \in \text{Im } f$, il existe $e_{2k} \in \mathbb{R}^n$ tel que : $e_{2k-1} = f(e_{2k})$.

 $(e_1,e_3,\ldots,e_{2r-1})$ une base de $\operatorname{Im} f \subset \ker f$ ainsi $(e_1,e_3,\ldots,e_{2r-1})$ est une famille libre de r vecteurs de $\ker f$. Comme dim $\ker f = n-r$, d'après le théorème de la base incomplète, il existe $e_{2r+1},\ldots,e_n \in \mathbb{R}^n$ (n-2r vecteurs) tels que $(e_1,e_3,\ldots,e_{2r-1},e_{2r+1},\ldots,e_n)$ soit une base de $\ker f$.

Posons $\mathcal{B} = (e_1, ..., e_n)$. Montrons que \mathcal{B} est libre.

Soient $\lambda_1, ..., \lambda_n \in \mathbb{R}$ tels que : $\sum_{k=1}^n \lambda_k e_k = 0$.

On a: $\sum_{k=1}^{n} \lambda_k f(e_k) = 0$ or $(e_1, e_3, ..., e_{2r-1}, e_{2r+1}, ..., e_n)$ est une base de ker f donc:

$$\lambda_2 f(e_2) + \cdots + \lambda_{2r} f(e_{2r}) = 0.$$

Donc:

$$\lambda_2 e_1 + \cdots + \lambda_{2r} e_{2r-1} = 0.$$

Or $(e_1, e_3, ..., e_{2r-1})$ est libre donc :

$$\lambda_2 = \cdots = \lambda_{2r} = 0.$$

Ainsi:

$$\lambda_1 e_1 + \cdots + \lambda_{2r-1} e_{2r-1} + \lambda_{2r} e_{2r} + \ldots \lambda_n e_n = 0.$$

Or $(e_1, e_3, ..., e_{2r-1}, e_{2r+1}, ..., e_n)$ est libre donc :

$$\lambda_1 = \cdots = \lambda_{2r-1} = \lambda_{2r}e_{2r} = \cdots = e_n = 0.$$

Ainsi ${\cal B}$ est libre.

Comme Card $\mathcal{B} = n$, alors \mathcal{B} est une base de \mathbb{R}^n .

